Meta-Life. Biotechnologies, Synthetic Biology, ALife and the Arts, a Leonardo-MIT Press e-book edited by Annick Bureaud, Roger Malina and Louise Whiteley.

Available on amazon USA and UK.

0i0i0imetalife-cover.jpg

Publisher Leonardo/Olats writes: Artists have opened new avenues in the art world by employing these developments in biotechnology, synthetic biology and Artificial Life; going from inanimate to autonomous objects to living creatures; exploring the thin border between animate and inanimate; confronting the grown, the evolved, the born and the built; and raising aesthetic but also social, political and ethical issues.

New forms of 'exo-life' may not arrive on Earth from outerspace by hitching a ride on a meteorite, but instead come out of the lab, designed by scientists - or perhaps artists - weaving together biology and computing in a petri dish or bioreactor.

Over the last fifty years our ideas about the nature of life have changed dramatically. Revolutionary advances in genetics and molecular biology have given us new insights into how carbon based life on our planet originates and functions. In more recent years the development of synthetic biology has dramatically expanded our ability to design and modify life forms. At the same time, disruptive developments in computing technologies have led to the possibility of generating digitally-based artificial life. And outside traditional institutions, emerging DIY, bio-hacking and citizen science movements have begun to appropriate laboratory technologies, challenging ideas about the governance of the life sciences.

0-Ai-Hasegawan_3.jpg
Ai Hasegawa,I Wanna Deliver a Dolphin..., 2011

0pnhscarabee2-3.jpg
Vincent Fournier, Post Natural History, 2012

Meta-Life is an anthology of articles published in Leonardo about the living, the non-living and the 'kind of living' in all their forms. There are 45 articles in total, some date back to the 1990s, others are newly commissioned texts. In fact, the whole DIY Biology - BioHacking section is composed of new commissions.

A quick look at the titles of the sections demonstrates the wide-range of themes explored: Between Bio, Silico and Syhtetic: Life and the Arts reflects on how our notions of life and of art are challenged both by computer technology and biotechnologies; Artificial Life and the Arts as well as the section called BioArt contain theoretical and philosophical texts about both fields, Bio - Fiction, Design, Archictecture explores the thin border between reality and fiction; DIY Bio - BioHacking proposes various points of view on the bio DIY movement.

I haven't been through the whole ebook but i've read most of the articles and so far, so very good. To be blunt, I don't trust Leonardo to publish texts that are approachable and engaging. Intelligent, informative and thought-provoking, they do very well but appealing to broad(ish) audiences? I wasn't not so sure. Well, that's where i was very wrong. There is no abstruse language nor complex theories in this ebook. Trust me, I deliberately looked for it.

0i2amorphop46139.501.jpg
Hugo de Vries, a Dutch botanist and early geneticists, who suggested the concept of genes, rediscovering the laws of heredity in the 1890s while unaware of Gregor Mendel's work, for introducing the term "mutation", ca. 1930. Photo © C.G.G.J. van Steenis

Here's just a couple of examples of the essays i've enjoyed, in no particular order:

Dr Craig Hilton writes about his collaboration with artists Billy Apple® to create what is simultaneously a subject of art and of scientific endeavor. This project consisted in growing the first biological tissue made available for artists and the first biological tissue for science research made available by an artist as art. The Immortalisation of Billy Apple® is a work of art that lives, multiplies and has the potential to create other works of art ad infinitum, especially because there is no restriction placed on the use of the Billy Apple® 's tissue.

The flamboyant Adam Zaretsky authors a sex-infused manifesto about the utopias surrounding the art (manipulation) of the living.

Following the exhibition GROW YOUR OWN ... Life After Nature, Michael John Gorman offers a coherent and crystal-clear introduction to synthetic biology, in which he also manages to include a few reflections on intellectual property, ethical and regulatory framework, media frenzy, and market interests.

Anna Dumitriu explores the relationship between bacterial and digital communications networks through the lessons she learnt while working on her project Cybernetic Bacteria 2.0.

0h0hannadumicyberbac8.jpg
Anna Dumitriu, Cybernetic Bacteria 2.0

Steve Tomasula places bio art into the context of the tradition of manipulating nature for aesthetic reason.

Oron Cats investigates the concept of being alive or 'just kind of living.' He makes some important points about the absence of a cultural language that would help audiences deal with tissue culture and other fragments of life. How should we culturally articulate and position lab-grown life when we have no cultural reference that would allow us to relate to it?

David Benqué has an enlightening conversation with independent synthetic biologist Cathal Garvey. The discussion explores the difference between DIY biology and BioHacking, the fear of biotechnology escaping the labs, the cost of creativity in biology, etc.

The first text i ran to was actually Alessandro Delfanti's research about DIY biology and its position in the world of science, the world of the market and the state.

I think i could go on and on. I carried Meta-Life in my e-reader throughout the Summer and enjoyed dipping in and out of it. I think that this collection of texts by illustrious artists, designers, and researchers constitutes a great reference to anyone who has a mild-to-strong interest in how the art world is exploring the synthetic and the aesthetic, the artificial and the new natural, the fictional and the ethical dimensions of life.

Get that one for your Kindle, it's a gem.

Image on the homepage: Brandon Ballengée. Malamp Reliquaries, 1996-ongoing. Unique IRIS prints on water-colour paper. 2003-07.

Sponsored by:





The Oaxaca Valley in Mexico is regarded as the heartland of corn diversity. Not only can cultivation of the plant in the region be traced back to over 6000 years ago, it also presents the highest genetic diversity of corn in the country.

Yet, this rich and ancestral biodiversity is threatened by the introduction of genetically modified seeds in the region. In November, 2001, David Quist and Ignacio Chapela from the University of California, Berkeley published an article in the journal Nature in which they reported that some of Oaxaca native corn had been contaminated by pollen from genetically modified corn. Unsurprisingly, the essay was heavily criticized by academics who had suspicious ties with the biotechnology industry.

cenizaMG_1904.jpg
BIOS Ex machinA: Serán ceniza, mas tendrá sentido ligeramente tóxico

milpa5631.jpg
Marcela Armas and Arcángel Constantini, Milpa polímera

An exhibition at the MACO, Oaxaca Contemporary Art Museum, reflects local attempts to preserve Oaxaca's rich genetic heritage. The 'corn issue' cannot be reduced to a fight against the transgenic industry, it is also a battle to preserve a whole culture, an identity and a certain vision of the world.

Bioartefactos. Desgranar lentamente un maíz (Bioartefacts. Slowly treshing corn) presents 9 installations which highlight the 'artefact' nature of corn. The plant is a biological artefact because it is the result of a human domestication that took place thousands of years ago and it has in turn shaped the whole country over as many years.

The works exhibited include a robot that 3d prints then plants seeds made of a biopolymer created from corn (PLA), an installation that monitors and visualizes the breathing of corn as well as a series of corn plants connected with electrodes to record the interaction between plants and humans.

0DoaxacaSCN5590.jpg
Macedonio Alcalá street in Oaxaca. Photo courtesy of Arte+Ciencia

I haven't visited the show but the theme, the works selected and the political undertones deserved to be further investigated so i contacted María Antonia González Valerio, curator of the exhibition and director of Arte+Ciencia (Art+Science), asked her for an interview and she kindly agreed to answer my questions.

Hi María! Could you explain the political and economical context of the exhibition?

The exhibition faces a difficult political and economical context in Mexico. Political decisions, in general, are being taken without including the actual living conditions and opinions of Mexican people. This makes us ask how is a community organized, how is it build. Which, of course, has no easy answer. It depends not only on the cultural context of the community, but also on the economical context. Diversity of possibilities of organization is something that we want to stress with the exhibition. Given the political context, that is very artificial and faraway from everyday life, and given the economical conditions, that in general terms and related to politics are benefiting the big and international enterprises, we need to find a way to preserve cultural diversity and biodiversity. This is not an easy task. But if we can show that there are many ways to dwell in this world, and that the capitalism-Western style is still not the only one, but a possibility among others, then we are making a strong point. It is then very important to highlight the complexity of the problems, the many perspectives, the way in which they are related and co-dependent, that is, that economical and political context have a lot to do with cultural diversity and biodiversity.

1desdeadentro458_n.jpg
BIOS Ex machinA: Desde adentro

Why does the exhibition focuses on corn, rather than any other cereal or edible plant?

Corn is a special plant for Mexico. It has many layers for us. Corn is related to cultural identity, land, food, religion, mythology, rites, family, economy, animals, etc. By stressing the ways in which corn is produced, grown and used in different contexts, we want to meditate on the different aspects that constitute also different worldviews.

Corn is still the basis of Mexican nourishment. What is the relationship that we have to our food? We can at least point to the industrialized way in which it is being produced in the north of the country, the traditional way like in rural Oaxaca, and the indigenous way also taken Oaxaca as an example. From the very much-mediated relationship to food that we have in the cities where everything comes from markets and supermarkets, to the self-subsistent system of corn growth and consumption in rural Oaxaca, we can think about the different ways in which we build our world. Instead of thinking of opposites, I believe that people from the cities have a lot to learn from the countryside, not only in respect to food consumption, but also from the different ways of life. In the same sense, the city has a lot to teach to the countryside.

We cannot face the problem of corn, food, GMO's, biotechnology, etc. only thinking about economical, biological or scientific issues, the cultural aspect is very important. When we talk about different ways of producing corn, from rural to industrialized, we are not talking only about machines or monocultures, but really about cultural diversity.

Art is one of the better ways to show this cultural diversity that at the same time is intimately related to the natural world, which for us now means also the production and designing of "bio-artifacts". Corn is a bio-artifact. But we have to learn to see degrees, nuances and be more specific in the kind of analysis that we make when we draw a border between the natural and the artificial.

0i2banco.00-40.jpg
El Banco de Germoplasma de Especies Nativas de Oaxaca (gene bank of Oaxaca's native species). Photo courtesy of Arte+Ciencia

0genebak0.00-42.jpg
El Banco de Germoplasma de Especies Nativas de Oaxaca (gene bank of Oaxaca's native species). Photo courtesy of Arte+Ciencia

In Europe, GMO are submitted to very strict regulations. The U.S.A. are notoriously far more favorable to GMOs. How is the situation in Mexico and what is the state of the debate about 'native' corn vs transgenic corn?

For the moment, there is a prohibition in Mexico to continue with the planting of transgenic corn, not even for experimental purposes, because it has been demonstrated that all our country has corn biodiversity, not only the south, and that therefore all the territory must be protected from contamination. Being also the center of origin of corn, puts us in the special condition of watching for biodiversity.

But it is very important to say, and we have previously demonstrated this, that we are importing corn seeds from the USA, some of them are transgenic and germinal. Non-human animals are being fed in Mexico with transgenic corn. There is not an adequate surveillance from the Mexican government in regard to the importation of these seeds. And since we are bound to buy corn to the USA, because of the NAFTA, and the USA is producing transgenic corn, we are very worried.

It can be said that there is no problem with transgenic food, but there is no consensus in the scientific community about this. And this should be enough to have more precaution. But I insist, what is at stake is not only the way in which we produce food and what for, but also how we dwell in this world, and what cultural diversity are we willing to preserve and respect.

The example of high fructose corn syrup allow us to see how things are related to each other in more profound and complex ways that what we usually are seeing. The production of this syrup has signified for Mexico a financial crisis regarding the sugar cane industry. The consumption of these products is also a health problem. Why are we eating everything so sweet? How and why have we changed so profoundly in the past century our relationship to the land, the planet, our bodies, our cultures, etc.? What does technology means seeing from this perspective?

How can art contribute to the discussions around the issue?

The nine pieces that we are presenting are dealing with many of the topics afore mentioned. BIOS Ex machinA: Serán ceniza, mas tendrá sentido ligeramente tóxico/ It will be ashes, but will make sense (slighty toxic). Is an experiment to detect contamination of transgenic corn in seeds in Mexican soil. We test the resistance to the herbicide glyphosate or Roundup produced by Monsanto.

ceniza_1945.jpg
BIOS Ex machinA: Serán ceniza, mas tendrá sentido ligeramente tóxico

seranceniza_1934.jpg
BIOS Ex machinA: Serán ceniza, mas tendrá sentido ligeramente tóxico

BIOS Ex machinA: Polinización cruzada/Cross-pollination is a video documental that presents interviews to different actors in the current debate regarding transgenic corn in Mexico. It exhibits the capacity of the discourse to say true or to lie.

polinizasion5492.jpg
BIOS Ex machinA: Polinización cruzada

BIOS Ex machinA: Desde adentro. Experiments in situ to teach the reaches and limites of DIY biology.

0desdeadentro.jpg
BIOS Ex machinA: Desde adentro

Arcángel Constantini and Marcela Armas working with BIOS Ex machinA: Milpa polímera/Polymer milpa. Is a robot-3D printer that prints PLA in form of
corn seeds. The ultimate degree of industrialization of corn, is use it to produce plastics.

DmilpaSCN5625.jpg
Marcela Armas and Arcángel Constantini, Milpa polímera

milpa635.jpg
Marcela Armas and Arcángel Constantini, Milpa polímera

Lena Ortega's La dulce vida/La dolce vita deals with the problem of high fructose corn syrup, the way in which families are fed nowadays, and the transformation from the rural world to the cities.

dulceIMG_1984.jpg
Lena Ortega, La dulce vida

Alfadir Luna's Containers reflects about the problem of transforming corn into a commodity that is being transported in containers along with fuel, concrete, steel, etc.

0container0771.jpg
Alfadir Luna, Container

Collective MAMAZ. Códice del maíz exhibits textiles that tell the story of what corn represents to local women in Oaxaca and in other places of Mexico.

mamazzzzzzzz.jpg
Colectivo MAMAZ, Códice del maíz

0femmes-102.jpg
Colectivo MAMAZ, Códice del maíz

Collective Zm_maquina Media Lab: Installation that senses the respiration (production of CO2) of corn plants and engraves a copper disc with this data.

Minerva_Hdz-Desmodium(1).jpg
Collective Zm_maquina Media Lab

Minerva Hernández and Héctor Cruz: Zea mays. Installation that reflects on how the corn plants are altered by the presence of humans.

Hector_Cruz_MINERVA-HERNANDEZ_ZEA-MAYS-_2014IMG_4361.jpg
Minerva Hernández and Héctor Cruz, Zea mays

Hector_Cruz_MINERVA-HERNANDEZ_ZEA-MAYS-_2014IMG_4380.jpg
Minerva Hernández and Héctor Cruz, Zea mays

I read in an online article that visitors will be able to work with scientists to determine whether a corn is transgenic or not. Could you tell us more about the setting and the participation of the public?

There are two possibilities for actual interaction of the public with the exhibition. The day of the inauguration we set a lab of DIY biology. We wanted to show to the public how to extract a DNA molecule out of a corn seed. Also, we wanted to show how to do a process of electrophoresis and of replicating DNA with a PCR. For this we used DNA from E. coli.
The other possibility is bringing corn seeds to the museum. Here we will plant them and grow them to test the resistance to Roundup. In case that we have resistance to the herbicide, we will take the surviving plants to the lab, to test if they are transgenic or not.

The exhibition seems to feature works in which artists have collaborated with scientists and engineers. Was this art/science collaboration one of the main thread of the curatorial process? How did you select the artworks that participate to the exhibition?

This exhibition has an important antecedent in a previous one, Sin origen/Sin semilla (Without origin/Seedless) that we presented in 2012-2013 in the museums MUCA Roma and MUAC at UNAM in Mexico City.

We have been working with scientists, engineers, artists, scholars, students, editors, designers, etc. We strongly believe that the interdisciplinary work is the way to approach complex issues, because it permits a wide perspective that can relate different layers. This is how we have been working on the issue of corn, and so far we have very good results.
In the group Arte+Ciencia (Art+Science) based at UNAM we have been building a path to intertwine arts, science and humanities.

Thanks María!

All images courtesy of Arte+Ciencia.

As promised about 100 years ago (see: FIELDS, positive visions for the future), here's another post about Fields - patterns of social, scientific, and technological transformations, an exhibition featuring works by artists who adopt an engaged, critical and active role in society.

0radix31.jpg
Image courtesy Radix

This time, i'd like to focus particularly an installation which explores the life of a very common, yet mysterious, snail that travels around north west Europe. Possibly on the feet of ducks which i find most romantic.

This Wandering Snail is the radix balthica. The reason why we should all get a bit more excited about those little creatures is that they can survive in extreme and varied environmental conditions and constitute thus an excellent model for determining the traits which species might possess that could be beneficial for survival under altered environmental conditions, such as climate warming and increased saline intrusion into freshwaters.

The artists and researchers from Radix (David Strang, Deborah Robinson, Simon Rundle and Bronac Ferran) describe the installation as follows:

The installation is an improvised rigging of laboratory vessels and technology developed with support from laboratory technicians skilled in researching and constructing various laboratory setups. The application of data (lab and field) has been developed through the work - investigating the control of lighting, sonification and physical vibration of elements in the installation. One aspect of the data explored is the connection of the name "Radix balthica", the snail, and "Radix Sort" a computer science based sorting algorithm. We are interested in the interplay between a snail (a messy biological entity under scientific observation and the subject of experimentation) and an algorithm (dating back to 1887 and the development of tabulating machines) that sorts and orders data sets..

14fieldse73b_z.jpg
Image courtesy FIELDS

Clearly, this required a few questions to Radix:

Why did you decide to work with the Radix balthica? What makes it more interesting than other types of snails?

From the scientific perspective Radix balthica is a species of aquatic snail that exhibits a high degree of plasticity - i.e. its shell form, pigmentation, physiology and development are all known to change in response to environmental conditions. This plasticity is thought to be the reason that it is widespread, occupying a range of different habitats in Northwest Europe, from small temporary ponds to large rivers and lakes and the Baltic Sea. The fact that this species has such a high level of tolerance and exhibits a lot of variation in its development, physiology and form makes it an excellent model species for studying questions to do with evolution - as variation is seen as the 'raw material' on which natural selection can act. Moreover, it will also give clues as to the way that freshwater organisms might respond to climate change, i.e. increased temperatures and saline intrusion into fresh waters through sea level rise.

0a0a0embr7yo3.jpg(Radix balthica embryo image)

Research into the evolutionary ecology of this species at Plymouth has focused in on its developmental biology. Because it has transparent embryos its development can be observed easily in the laboratory and it also reproduces readily in the laboratory, allowing studies of inheritance. Most recently, there have been advances in the generation of 'new generation' genomic resources for this species that will allow the investigation of how genetic and environmental factors interact in its evolution and ecology.

From the art perspective our interest in Radix balthica has grown over a three year collaboration with Simon Rundle (freshwater ecologist) and involvement in his research. We are intrigued by how a tiny grey snail that is easily overlooked and seemingly insignificant, has come to play an important role as a marker of climate change. We are interested in our human relationship to this creature.

We were drawn to the idea that this species had been named the 'wandering snail', a name that alludes to its widespread distribution but could also be seen to relate to the ambiguity associated with its scientific names, which have shown numerous changes since its original naming by the father of classification Linnaeus. This aspect of the snail's biology were included in the work through the text from Linnaeus's journey to the island of Gotland in the Baltic Sea in 1741, on which he collected the type specimen of Radix balthica. We felt that working with the snail in the context of the Fields exhibition in Riga would be very appropriate in relation to location and migration as well as transdisciplinary research brought into the public domain.

0a0a0a0radix.jpg
Image courtesy Radix

Could you explain the installation? I actually couldn't see the snails when i was in the gallery, i guess they were hiding.

There are two main strands to the work that draw on the idea of wandering. The first relates to the tolerance of the species. There are three 'replicate' jars containing snails and pond weed in water of three salinities from three locations where Radix balthica can be found: i) rivers near Plymouth - the place where the snails in the exhibition were collected from; ii) the Baltic Sea at Riga; and iii) further south in the Baltic Sea, where the salinity is higher. A further, single jar sits on the shelf above each of the three replicates for each treatment. This jar contains water of the same salinity as the corresponding three jars. This jar 'controls' the light intensity in the corresponding jars by converting salinity sensor readings into values for LEDs. This form of control reinterprets the common use of the term of 'control' in scientific experiments - replacing the idea of a 'reference' treatment against which experimental responses can be gauged with a more literal interpretation of control.

The second strand of the work draws on the ambiguity of the naming of the species since Linnaeus. We provide three readings of Linnaeus's original text describing his journey to Gotland on which he collected the type specimen of Radix balthica - the original text and in two versions sorted by the Radix algorithm.

When it comes to perceiving them they are the humble snail - an often overlooked species, difficult to see and with the work we invite you to spend time looking and watching.

0radix41.jpg
Image courtesy Radix

1lauren_85fa54c868_z.jpg
Image courtesy Radix

But i saw glass containers, wires, plants. What are they? What is their purpose? How do they work together?

The glass containers are setup in three groups representing Plymouth, Baltic and Riga. Each set has three jars with water, plant, snails and a measured salinity inside that are lit from above using white LED light. The fourth jar in each set has the same measured salinity as the three jars below it and a salinity sensor. The salinity sensor in each group is measured using Arduino to control the intensity of the LEDs. The code also introduces the changes in the system over time - a six-hour fluctuation in line with tidal movements that would alter the amount of salinity present in the water. The wiring shows the mapping of these connections throughout the system and also includes the surface transducer that is placed on the top shelf from which the audio plays out across the architecture of the installation.

The plant inside the jars is Canadian Pond Weed (Elodea canadensis) that is part of the small ecosystem where the snails feed off the algae that grows on the plant - sustaining both the snails and the plant.

During the course of the exhibition, you are monitoring the way the snails respond to gallery conditions, light, salinity and atmosphere. What have you discovered so far?

Such a long exhibition provides challenges to keeping the snails healthy and alive especially at a distance: we don't quite know how they will fare and so - in this sense - it is a real experiment, taking lab snails back into the field which is, in this instance, a public art field. We have set up some test conditions and are monitoring the liveliness of the creatures through observation by colleagues. In mid June Professor Richard Thompson (a member of Marine Biology and Ecology Research Centre, Plymouth) visited the gallery and re-photographed the snails using Simon's original viewpoint. One of us will go across to Riga to repeat this process in a couple of weeks.

Why do you want to monitor the response of the snails to their long sojourn in the gallery?

At the outset of the project we wanted to monitor the fate of the snails for a couple of reasons.

We wanted to know how the snails would respond to an art environment, and how their fate might shape in accord with our artistic intent.

Beyond this we envisaged that the act of 'monitoring' might act as a strategy around the instability of the gaze (moving between aesthetic/scientific) in relation to a gallery context. We worked with the idea that scientific visualisations are premised on a relational positions of power between those who are scientifically educated and those who are not. We wanted to extend an invitation to the gallery viewer to participate in (but not be educated by) the scientific gaze .

We have set up what appears to be a scientific experiment in a gallery. The approach was to use a strategy of mimicry where the art exhibition context is deployed as a means to identify fissures within an experimental system that can then be opened to further reflective artistic investigation.

Note: A reading of the work of Luce Irigaray (1985) that gives emphasis to the development of mimicry as an anti-essentialist strategy underpins how we have approached Wandering Snail - a work that could be conceptualised as a kind of "essence of an experiment" and used the specific context of the gallery as a mechanism that could potentially reveal aspects that may be repressed in another context - the laboratory. "Mimicry reveals something in so far as it is distinct from what might be called itself that is left behind" (Lacan, 1977)

0radix0infield.jpg
Image courtesy Radix

The description of the work also mentions the Radix Sort algorithm. What kind of role does this algorithm play in the installation?

Radix Sort is a sorting algorithm that is a playful mediation between the human and the snail. The initial connection came through the name 'Radix' as the root or base in computing and in the naming of a species and this connection developed further after researching the way Radix Sort uses two categories to sort data: Least Significant Digit (LSD) and Most Significant Digit (MSD). The use of the LSD method brings up ideas around noise in information that, which parallels other areas of research within the Radix group.

The algorithm is used within the work to play with the text and form a sonic output that is both a reading of sorted text (lexicographically) and a further manipulation of the audio file of that reading. Two readings of the text about Linnaeus' journey to Gotland, on which he discovered the species were recorded - one is a straight recording and another made after the algorithm has sorted the text alphabetically. The audio files are also sorted using Radix Sort by frequency and amplitude and the results are then mixed with the readings and played out across the architecture of the installation shelving using a surface transducer.

You work together under the name of radix research group at the University of Plymouth. What brought you together? Is there a website that gathers all the works you've done together?

A shared interest in interdisciplinary art/science research through practice brought us together. Three of us - Deborah, Simon and David - are academics at Plymouth University and we have worked together on precedent projects involving the snail since 2011 when Deborah became artist in residence with MBERC (Marine Biology and Ecology Research Centre) at Plymouth and created a collaborative work called Transpositions with Simon. David then worked with both on a second project, an immersive sound installation based on the snail embryo, called ATRIA. Bronac Ferran is a writer and curator who we invited to collaborate with us to build new audiences for the work. Radix as a shared art organism is relatively new. We're building a website and will hopefully do some publishing in future as well as more exhibitions based on the humble snail.

For more information about Transpositions and ATRIA see Deborah's website, an
essay by Simon, and a video of Radix balthica's full embryonic development by Oliver Tills, MBERC, Plymouth.

Website (under construction) about Radix.

Do check out Wandering Snail at the Fields exhibition, produced by RIXC and curated by Raitis Smits, Rasa Smite and Armin Medosch. The show remains open at Arsenals Exhibition Hall of the Latvian National Arts Museum (LNAM) in Riga until August 3, 2014.

Previously: FIELDS, positive visions for the future.

0aaa13tree0_b.jpg
BioArt Laboratories, Tree Antenna at Age of Wonder (demo outside Baltan Laboratories). Photo by Sas Schilten

0a1aloneradio9ebf85_b.jpg
BioArt Laboratories, Tree Antenna at Age of Wonder (demo outside Baltan Laboratories). Photo by Sas Schilten

I already mentioned the festival Age of Wonder last week in my notes from Nick Bostrom's talk about (human and artificial) Super Intelligence. The festival attempted to reflect on the challenging but ultimately exciting techno-mediated times we are living with a series of performances, keynotes and art installations. BioArt Laboratories illustrated the essence of the festival with Tree Antenna, an installation and workshop that engaged with alternative wireless communication, ecology, DIY culture and historical knowledge.

The Eindhoven-based multidisciplinary art&design group recreated an early 20th Century experiment in which live trees are used as antennas for radio communication.

General George Owen Squier, the Chief Signal Officer at the U.S. army not only coined the word "muzak", in 1904 he also invented in 1904 a system that used living vegetable organisms such as trees to make radio contact across the Atlantic. The invention never really took off as the advent of more sophisticated means of communication made tree communication quickly look anachronistic.

Tree communication was briefly back in favour during the Vietnam War when U.S. troupes found themselves in the jungle and in need of a reliable and easy to transport system of communication but after that, only a few groups of hobbyists used tree antennas for wireless communication.

0i0tree-antenna.jpg
George O. Squier ~ Trees as Antennas (Scientific American, June 14, 1919 & British Patent Specification # 149,917)

0-through-the-trees.jpg
Illustration from Squier's patent

During the last afternoon of Age of Wonder, BioArt Laboratories invited members of the public of all ages and background to join them and bring back tree antennas to our attention. Participants of the workshop could craft simple and affordable devices that would allow anyone to use the tree in their backyard as a radio receiver (it is also possible to broadcast from your tree but the technology is slightly more expensive and it requires permits.)

Squier drove a nail into the tree, hung a wire, and connected it to the receiver. The BioArt Laboratory team used flexible metal spring that wrapped around the trunk as planting a nail into the tree would have damaged it. Their system definitely works as the team managed to communicate with amateurs radios from countries as distant as Italy and Ukraine.

Right now there are only a few amateurs using tree and other high plants for wireless communication but the BioArt Laboratory's objective is to spread the word about this simple and affordable technology and gradually build up a world-wide forest of antennas.

0aaaa01treeworshobc_b.jpg
BioArt Laboratories, Tree Antenna at Age of Wonder (workshop at Baltan Laboratories.) Photo by Sas Schilten

0a1twoworks27a7_b.jpg
BioArt Laboratories, Tree Antenna at Age of Wonder (workshop at Baltan Laboratories.) Photo by Sas Schilten

0a0aa1diagramde93_b.jpg
BioArt Laboratories, Tree Antenna at Age of Wonder (workshop at Baltan Laboratories.) Photo by Sas Schilten

Obviously, in this experiment the tree is part and parcel of the functionality of the antenna. We're thus not speaking of questionable antennas disguised as tree.

0a1ensembblb0_b.jpg
BioArt Laboratories, Tree Antenna at Age of Wonder (demo outside Baltan Laboratories). Photo by Sas Schilten

0a1grosplan3_b.jpg
BioArt Laboratories, Tree Antenna at Age of Wonder (demo outside Baltan Laboratories). Photo by Sas Schilten

0a1liste15151_b.jpg
BioArt Laboratories, Tree Antenna at Age of Wonder (demo outside Baltan Laboratories). Photo by Sas Schilten

0a1betterce2_b.jpg
BioArt Laboratories, Tree Antenna at Age of Wonder (demo outside Baltan Laboratories). Photo by Sas Schilten

0lhousden9mar14ivan31.jpg
Ivan Henriques, Symbiotic Machine. Photo courtesy Lyndsey Housden

Having previously given life to a robot that enables plants to move around as they please, Ivan Henriques has collaborated with scientists from the Vrije Universiteit Amsterdam to develop the prototype of an autonomous bio-machine which harvests energy from photosynthetic organisms commonly found in ponds, canals, rivers and the sea.

The Symbiotic Machine uses the energy collected from micro organisms to move around in search for more photosynthetic organisms which it then collects and processes again.

The Symbiotic Machine is currently spending two months in an aquarium in the Glass House in Amstelpark, Amsterdam.

Short conversation with the artist:


Ivan Henriques, Symbiotic Machine

0dessusDSC07928.jpg

Hi Ivan! How does Symbiotic Machine relate to Jurema Action Plant. Is this a continuation of that previous work? Did you learn something from JAP that you are applying to the Symbiotic Machine? Or is this a completely different exploration?

The research that started with Jurema Action Plant led to the development of the Symbiotic Machine (SM). I have created a range of works that explores such concepts as: the future (reinvention) of the environment; the acceleration of techno-scientific mutations; when nature becomes culture; the use of natural resources; where these hybrids of nature and technology will take place in the near future and reshape and redesign our tools to amalgamate and be more coherent with the natural environment (these concepts were discussed in the e-book Oritur). When JAP was being exhibited I noticed that as the interaction between the person and the plant enables the machine to move, people were envision a living entity, which was responding to them - i.e. it likes me!, when JAP was moving towards the person and It doesn't like me!, when it was moving away from the person touching it. That is the reason why I gave the Action Plant a first name: Jurema.

0PLANT_MACHINEEVOLUTION.jpg

0A1-complete_cycle.jpg

In the past years I have been creating machines that operates within the biological time combining different energy sources. In JAP, the variation of electrical signals inside the plant changes when someone touches it and in Symbiotic Machine it is a machine that makes photosynthesis to generate energy for itself, like a plant. In JAP the machine reads electrical signals and in SM the machine makes photosynthesis in order to have these electrical signals. It is a further research into plants electricity and development of a hybrid entity.

2feu007-03-15 05.56.10.jpg

0fiolesDSC07532.jpg

Could you talk to us about the collaboration with scientists from the Vrije Universiteit Amsterdam? How did you start working with each other? And what was the working process like? Was it just you setting up instructions and telling scientists what to do? Or was it a more hands-on experience?

When I first met Raoul Frese, scientist from the Biophysics Lab from VU Amsterdam, (The Netherlands) I wanted to develop further JAP. I got very inspired after his speech in a symposium at the former NIMK in Amsterdam about photosynthesis. Later we did an appointment to discuss further our possible collaboration. To develop the Symbiotic Machine we had several meetings in my studio and in his lab. Soon, Vincent Friebe, PhD student from Biophysics lab also joined the team.

In this project I wanted to create an autonomous system, which is able to live by itself, as most of the living entities do. For me it is very poetic to create a hybrid living system that can move to search for its own energy source, process it and have energy to do its own life cycle.

We had lots of hands on experiences and exchanging ideas and techniques. The project started with the concept and the technology we could use, but this Beta version was designed according to the necessities and mechanisms the bio-machine required. The project also had collaborations with Michiel van Overbeek who developed the hard/software and the Mechanical Engineer lab from CEFET/RJ (Technological University of Rio de Janeiro, Brazil).

2green007-01-04 04.30.13.jpg



What are the photosynthetic organisms that the machine harvests? Could you give a few examples? What makes them interesting for the scientists you were working with? 

For this prototype we focused in a specific algae: Spirogyra. It is a genus of filamentous green algae, which can be found in freshwater such as canals and ponds. Spirogyra grows under water, but when there is enough sunlight and warmth they produce large amounts of oxygen, adhering bubbles between the tangled filaments. The filamentous masses come to the surface and become visible as slimy green mats.

I asked Raoul Frese why he is interested in photosynthetic organisms: " Scientists are researching photosynthesis and photosynthetic organisms to learn how processes occur from the nanoscale and femtoseconds to the scale of the organism or ecosystem on days and years. It is an excellent example how a life process is interconnected from the molecules to organism to interrelated species. For biophysicists, the process exemplifies molecular interactions upon light absorption, energy transfer and electron and proton transfers. Such processes are researched with the entire experimental physics toolbox and described by theories such as thermodynamics and quantum mechanics. From a technological point of view, we can learn from the process how efficient solar energy conversion can take place, especially from the primary, light dependent reactions and how light absorption can result in the creation of a fuel (and not only electricity)."

2exhib013-06-19 12.37.49_trat.jpg
Microscope Chamber #1. NY, New York - SVA 335 16st W. June 20th 2013

Why were you interested in photosynthetic organisms, and in creating a machine that would feed on them and function a bit like them?

My interest in photosynthetic organisms started when I wanted to develop further JAP in a way that a hybrid organism could harvest its own energy to live like a plant. In April 2013, during the residency in NY I had the opportunity to research these microorganisms when I created the installation Microscopic Chamber #1, using a laser pointer to magnify these microorganisms, where people could see in naked eyes projected on a wall different kinds of microorganisms swimming. These living organisms were collected at Belmar beach, in New Jersey and were displayed in the installation in an aquarium where I cultivated them.

The algae Spirogyra is very common in The Netherlands. The choices of the organisms presented in my works are based on the concept, their own technology and location of the specimen. One of the ideas is to adapt the mechanics and electrical system in the machine to be capable to function with the mili-voltages that plants, animals and us have. Create an autonomous system that could use such small scale of electricity to operate. After the residency I had several meetings with scientists from VU Amsterdam where I had the opportunity to research further the Spirogyra and other photosynthetic creatures.

In this research about plant and machines I want to find a way of coexistence between living organisms and machines more integrated, and inspire people for a possible different future.

0waterDSC07932.jpg


Could you explain us the shape of the floating mobile robotic structure? Because it looks much more 'organic' than typically robotic. Could you describe the various elements that constitute the robotic structure and what their role is?

The machine is designed to communicate with the environment. For this first model the machine is planned to process the algae from specimen Spirogyra to generate electricity. As this specimen is a filamentous floating organism, the robot has to be in water, floating together with the algae.

The structure is composed by an ellipsoid of revolution with 3 conical shaped arms. Attached to the arms tentacles equipped with sensors. The structure is transparent to catch sunlight at any angle. The choice for an ellipsoid of revolution is to create more surface area for the electrodes (photocells) and to use more of the sun rays onto the photocells when the light reflects in the golden electrodes - using more sunlight by consequence. The tentacles make the robot extend its senses to search for algae. The arms create closed chambers to place electronics.

The machine has a complete digestive system: mouth, stomach and anus. See the video:


Ivan Henriques, Symbiotic Machine (digestive system)

Sealed with a transparent cylinder a motor, an endless worm and a pepper grinder aligned and connected by one single axis compose the mouth/anus, like a jellyfish. This cylinder has a liquid inlet/outlet (for water and algae spirogyra) placed at the end part of the endless worm. The endless worm has an important function to pump liquid in and out and to give small propulsion for the machine.

0Screen Shot 2014-03-27 at 1.58.09 PM.jpg

In order to "hack" the algae spirogyra photosynthesis' and apply it as an energy source, the algae cell's membrane has to be broken. The pepper grinder that is connected at the end of the endless worm can grind the algae breaking the membrane cell, releasing micro particles.

These micro particles in naked eyes looks like a "green juice" which is flushed inside the machine: the stomach.

A tube that comes from the end of the mouth with grinded algae goes though the stomach, inside the ellipsoid of revolution. This tube is fastened on a 2-way valve placed in the center of the spherical shape. Inside the ellipsoid of revolution there is another bowl, just one centimeter smaller aligned in the center. Placing this bowl inside, it creates two chambers: 1] the space between the outer skin and the bowl and 2] inside the smaller bowl. In chamber 1 the photocells are placed in parallel and in series. The photocell is composed by a plate covered with gold, a spacer in the middle covered with a copper mesh. This set up allows the "green juice" rest between the gold and copper.

Penvers1030258.jpg

After the light is shed on the electrons of the grinded algae they flow to one of these metals, like a lemon battery. As all the photocells are connected, with the help from the electronic chip LTC 3108 Energy Harvester is possible to store these mili-voltages in two AA rechargeable batteries. A life cycle with functions was idealized in order to program the machine and activate independent mechanical parts of the stomach: it has to eat, move, sunbath, rest, search for food, wash itself, in loop.

The 2-way valve mentioned above is connected as: valve 1 hooked up with chamber 1 and valve 2 with chamber 2. When the stomach works is sent information to the machine that the valve 1 has to be opened. The algae flow to this chamber and the machine uses a light sensor to go towards where there is more luminescence to make photosynthesis. After the 10 min sunbathing (photosynthesis) the machine has to clean its stomach - and the photocells - to be able to eat again. Water is sucked in again with the mouth, and via the same valve from the algae, it pumps more water inside chamber 1 in order to have an overflow of this liquid in chamber 2. The liquid, which is now in chamber 2 is flushed out by the motor turning the endless worm and having the valve 2 opened. Fixed on the edge of the structure opposite the mouth, an underwater pump connected by a vertical axis with a servo powers the movement of the structure giving possibilities to steer 0, 45 and minus 45 degrees. The movement programmed for this machine was written concerned about the duration/time, space and energy.



What is next for the Symbiotic Machine and for you?

This version of the Symbiotic Machine still has to be improved and I would like to continue the research and develop this bio-machine further. I want to keep working to improve what was done. The exhibition is from March 9th until 27th April at the Glazen Huis in Amstelpark, Amsterdam.

To start this research it was only possible with support from Stichting DOEN and also to work with this fantastic team. There are another projects I am developing, keep your eyes on my website!

Thanks Ivan!

Previously by the same artist: Jurema Action Plant.

I don't normally blog about calls or upcoming events. Mostly because as breathtaking as they are, press releases 'copy/pastes' are not my idea of an appealing content. I do like to make exceptions to the rule though. One of them is the Bio Art & Design Award. It used to be called the Designers and Artists for Genomics award but its objective remains unchanged: the award invites designers and artists interested in life sciences to propose projects that push the boundaries of research application and creative expression. Each year the three most remarkable ideas are awarded a 25,000 euro grant to bring the project to life and exhibit it.

To be eligible for the award you must have graduated no longer than five years ago from a design or art program (at either the Masters or Bachelors level). Applicants are encouraged to relate their proposals to recent advances in the Life Sciences, including those within specialties such as ecology, biomedicine and genomics.

The deadline is 2 February 2014.

The selection process is rigorous, the research institutes associated seem to be genuinely enthusiastic about the collaboration and the results of the partnership are usually so exciting that i've blogged about them relentlessly in the past (check out in particular: The Living Mirror, Ergo Sum, the now iconic 2.6g 329m/s, aka the 'bulletproof skin', etc.)

0Bmaurizioooooooooo.jpg
Maurizio Montalti, System Synthetics

smalllllGjalilale3.jpg
Jalila Essaidi, 2.6 g 329 m/s (image Jalila Essaidi)

0aprayHeatelslsls.jpg
The Center for Genomic Gastronomy, Eat Less, Live More and Pray for Beans

I took the call for proposals as an excuse to chat about the award with Angelique Spaninks and Wilma van Donselaar. Angelique is the head of MU, the art center which is going to exhibit the winning projects next Winter and Wilma, who works at the the Netherlands Organisation for Health Research and Development, has been working on the Award from the beginning.

Designers and Artists for Genomics is now Bio Art & Design Award. Why did the name change? Does it involve any modification in the award? The way it is organized, its purpose, the spirit, the organizations involved?

Angelique Spaninks : The change of the name is partly due to a shift in organizational parties. The Netherlands Genomics Initiative that has set up the award has ceased to exist per January 1 of this year but it has managed to guarantee a budget for a similar award. This has been brought under care of ZonMW, the Netherlands Organisation for Health Research and Development, that is now in the lead. The other new partners are NWO (the Dutch Research Council) and MU, one of the leading art foundations in the Netherlands with a hybrid program reaching from contemporary art to design, media art and popculture.

MU will take care of coordination towards the exhibition of the three winning projects, combined with other new bio art and design projects. De Waag is still on board and so are several leading universities and research centers for the Life Sciences that provide teams of scientists that will closely collaborate with the artists and designers that will be selected to work on their proposals. In that sense the purpose and spirit have not changed, and neither has the prize money.

I'm, as always, impressed by the quality and quantity of scientific organizations the award got on board. Why do you think they accept the challenge to work with an artist or designer? What does the collaboration with a creative individual with an entirely different background and -i suspect- perspective bring to their research activities?

Wilma van Donselaar of ZonMW: At first the only scientific organizations that participated were funded by the Netherlands Genomics Inititiative and they had to be persuaded a bit in the beginning, but quite soon they thoroughly enjoyed the collaboration. The artists bring in completely new ideas and often challenge them into exploring new technological possibilities. There has to be a connection of course, but that is something that already becomes quite clear during the matchmaking event at the start of the competition. The only reason why it is difficult to keep scientists on board year after year is that it takes a lot of time. That is why we also bring in fresh research groups. But since we can show the results of previous award rounds now, that is not so difficult anymore.

Who should apply to the award? Is it mostly interactive designers and media artists or could a more 'traditional' artist/designer get a chance provided he's passionate enough about the possibility to engage with Life Science materials and ideas?

AS: We don't exclude anyone with an exciting but also viable proposal, who has graduated no more than five years ago in the field of art and design. Of course it will be more easy for artists/designers with some experience in working with Life Science materials and ideas, but the award is also there to stimulate young creatives to explore new territories and enhance the options for collaboration between creatives and scientists. All this to broaden and deepen the interest in and debate about the Life Sciences through the arts and examine it's social, cultural and ethical contexts.

0a0Dsounnnnhgd.jpg
Matthijs Munnik, The Microscopic Opera

How is an artistic/design proposal paired with a scientific institute? What is the process?

AS: Each participant can submit only one application before February 2. This application consists of a preliminary idea, portfolio and filled out registration form. Only 16 applicants will be selected for a matchmaking meeting in The Hague in March, where the creatives have to find a match with a team of scientists from one of the participating Dutch Life Science institutes. A list of the participating research groups of the 12 Dutch Life Science institutes can be found on the website www.badaward.nl. Once the matches are made artists/designers and scientists write a joint full proposal for the Award before end of April. Then mid-May all teams have to present their final proposals to the international jury which will then select the 3 winners. All proposals will not only be presented to the jury that day but also to the public. From June till November the Award winning proposals are realized by the artist/designers and scientists together and will be exhibited in MU art space on Strijp S in Eindhoven for 2 months starting from November 28, 2014.

Also I was wondering how the winning projects get accepted (or not) by the design and/or art world? Are they seen as hard to grasp and comment on pieces or does the art press and the art public embrace them as valuable and challenging expressions of creativity?

AS: The Award functions as a springboard, either for new nominations or Awards, new or extended collaborations, grants, positions or new publications. Experience with the first 3 years and 10 Award winners has learned that there is a growing interest in bio art and design in press and society but the art and design world themselves are lagging behind a bit. By presenting the winners in a respected yet hybrid contemporary art space like MU and in a leading art, design & technology driven city like Eindhoven we are convinced this will gradually change.

Thanks Angelique and Wilma!

 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10 
sponsored by: