A visit of the exhibition Mind Maps: Stories from Psychology yesterday made me realize, once again, that i should be grateful to live here and now and not at a time when melancholia was treated with a 'healthy' dose of electric shocks and nerves were supplied with a 'vital energy' by wearing an electrical belt previously soaked in vinegar. This ancient cure looked like jolly good fun though.

0abarinzz892r.jpg
Model of a human brain, sectioned, French, first half 19th century. Image courtesy Science Museum

0transition-2-11.jpg
Susan Aldworth, Transition series, 2010

Mind Maps explores how mental health conditions have been diagnosed and treated over the past 250 years. Divided into four episodes between 1780 and 2014, this exhibition looks at key breakthroughs in scientists' understanding of the mind and the tools and methods of treatment that have been developed, from Mesmerism to Electroconvulsive Therapy (ECT) and Cognitive Behaviour Therapy (CBT) bringing visitors up to date with the latest cutting edge research and its applications.

The small show is everything but dull and scholarly: controversial treatments such as electroconvulsive therapy and poisonous nerve 'tonics' are followed by pendulum measuring the speed of thoughts, Pavlov's experiments on conditional reflexes and by Freud and his couch.

Every single object in the exhibition comes with a fascinating and at times chilling story. The only criticism i'm ready to make about Mind Maps is that ongoing journey into the mysteries of the brain and the nervous system would benefit from a less dim and confined exhibition space.

Highlights from the exhibition:

0Frog-pistol-invented-1860s-credit-Science-Museum.jpg
Frog Pistol, invented 1860s. Image courtesy Science Museum

The artefact i found most puzzling was the 'frog pistol' developed by German scientist Emil du Bois-Reymond to demontrate 'animal electricity' to his students.

A fresh frog leg was placed on the glass plate inside the tube, with the nerve ends connected to the keys on the top of the pistol grip. When these keys were depressed, a contact was made and the leg kicked back as it if had been electrified.

The small pistol instrument was of course inspired by the work of Luigi Galvani. In the 1780s, the Italian doctor discovered that sparks of electricity caused dead frogs' legs to twitch, leading him to propose that electrical energy was intrinsic to biological matter. Some of the instruments used by Galvani in his pioneering studies of nerve activity are presented in the exhibition, they haven't been displayed in public for more than a century.

0Amuletic-dried-frog-in-a-silk-bag-from-early-20th-century-south-Devon.jpg
Amuletic dried frog in a silk bag from early 20th century south Devon. Photo Science Museum blog

The nerve/frog connection doesn't stop here. A dried frog inside a silk pouch is a testimony to the resilience of folk medicine in the 20th century, the essicated amphibian was carried around the neck 'to prevent fits and seizures.'

0_MG_4588__web.jpg
Detail of an anatomical table displaying human nerves, dissected at the University of Padua in the 17th century (image Fresh eye on London)

Let's keep on the macabre mood with this 17th century dissection table from Padua with all the nerves of (presumably) an executed criminal laid out on it to form a map of the nervous system on a varnished wooden panel.

0adams_electrical_machine_1889-29_800px.jpg
Cavallo-style electrical generator, made by George Adams, London, 1780-84. Object no. 1889-29 © Science Museum

Tiberius Cavallo, a leading European authority on medical electricity, designed this compact electrical generator and its accessories, including the 'medical bottle' that regulated the shocks it administered. Turning the glass cylinder built up a static electric charge in the metal collector on the side of the machine.

0DArsonval-cage-from-Rivieres-clinic-Paris-c.-1890-1910-credit-Science-Museum-386x500.jpg
D'Arsonval cage from Riviere's clinic, Paris. Image courtesy Science Museum

The patient stood inside the D'Arsonval cage while harmless high-frequency alternating current from the tesla coil on a desk pulsed around the metal framework, generating powerful electromagnetic fields inside the body. The treatment was claimed to stimulate metabolism, reduce obesity and eczema, and temporarily relieve nervous pains.

The cage was only one of the many devices that Dr J-A Rivière, "electrotherapist and pacifist", used in the 1890s. His Paris clinic specialized in 'physical' treatments involving water, air, heat, light, electricity and after 1895, the newly discovered X-rays. Patients were seated in electric chairs, flooded with electric light or plunged into electrified bathtubs.

0Bottle-of-Ner-Vigor-Anglo-Smaerican-Pharmaceutical-Co.-Ltd-1892-1943-Object-no.-A640381-credit-Science-Museum-342x500.jpg
Bottle of "Ner-Vigor", with instructions, in original carton, by the Anglo-American Pharmaceutical Co. Ltd. Image courtesy Science Museum

Huxley's 'Ner-Vigor' was used between 1892-1943 for "strengthening the nerves." Like some other medical products of the period, it contains a very small measure of the strychnine poison.

0Nervone-nerve-nutrient-credit-Science-Museum.jpg
Nervone nerve nutrient, 1924-49. Object no. 1988-317/165 © Science Museum

The Nervone 'nerve nutrient' was launched in the 1920s as an alternative to harmful nerve tonics and was still being sold in the 1960s when it was replaced by new anti-anxiety and depression drugs such as Valium.

0sherrington-cat_2761844c.jpg
Sherrington's cat model, c. 1920-30. Object No: 1999-917 © Science Museum

Nerve scientist and Nobel Prize winner Charles Sherrington was fascinated by the way cats kept their balance while negotiating obstacles at speed. This model was used to illustrate how the cat's eyes, whiskers, neck, legs and tail continued to work together even when the 'highest' portion of its brain had been removed.

0electroconvulsion8-479_634x394.jpg
Electroconvulsive therapy machine made in the 1940s for the Burden Neurological Institute

The period that followed the Second World War saw the rise of several controversial treatments, including electro-convulsive therapy (where electricity is used to induce a brain seizure) and lobotomy.

0aabotomyqequipme.jpg
Equipment for conducting an electronic lobotomy, 1962

The machine was designed to deliver just enough current to a gold electrode to make a peppercorn sized hole in the brain. This technique, also known as leucotomy, was a more precise form of lobotomy. It was used from the early 1960s to treat patients with uncontrollable anxiety.

0EEG-Hairnet-credit-Science-Museum-666x500.jpg
EEG hairnet. Image courtesy Science Museum

Electroencephalography (EEG) remains an essential element of the psychology laboratory. It is frequently used in conjunction with brain scanning.

0Moranaamulet5_zps57c39dbf.jpg
Lecuir's battery, 1880-1920. Photo courtesy Science Museum, London

Batteries to stimulate nervous energy sometimes also featured religious symbols, because mental health needs all the help it can get, right?

Mind Maps: Stories from Psychology is free and runs at the Science Museum in London until 10 June.

Sponsored by:





I spent the weekend in Eindhoven for Age of Wonder, a festival which turned up to be even more exciting and engaging than its name promised. I'll get back with images and posts later but right now i felt like blogging my notes from Nick Bostrom's keynote about Superintelligence. Bostrom is a Professor in the Faculty of Philosophy at Oxford University and the director of The Future of Humanity Institute. He talked about the ultra fast pace of innovation, hazardous future technologies, artificial intelligence that will one day surpass the one of human beings and might even take over our future.

0b90fad6c119f8ab8.jpg


HAL 9000 vs Dave in Stanley Kubrick's film 2001: A Space Odyssey

Bostrom is worried about the way humanity is rushing forward. The time between having an idea and developing it is getting increasingly shorter. This gives less space to reflect on the safety of innovation. Bostrom believes that humans cannot see the existential danger this entails. If the future is a place where we really want to live, then we will have to think in different and better-targeted ways about ourselves and about technological developments.

Bostrom's talk started on a high and slightly worrying note with a few words on existential risk. An existential risk is one that endangers the survival of intelligent life on Earth or that threatens to severely destroy our potential for development. So far, humanity has survived the worst natural or man-caused catastrophes (genocide, tsunami, nuclear explosion, etc.) but an existential catastrophe would be so lethal that it would ruin all future for all mankind. An analogy on an individual scale would be if you find yourself facing a life sentence in prison or in a coma you don't wake up from.

0asuperisksexistential.jpg
Slide from Nick Bostrom's presentation: Negligible to existential catastrophes (bigger image)

So far we've survived all natural catastrophes but we need to beware of anthropogenic risks. New technologies haven't yet managed to spread doom. Nuclear weapons, for example, are very destructive but they are also very difficult to make. Now imagine if a destructive technology was easy to make in your garage, It could end in the hands of a lunatic who plots the end of human civilization.

Potentially hazardous future technologies such as machine intelligence, synthetic biology, molecular technology, totalitarism-enabling technologies, geoengineering, human modification, etc. had not been invented 100 years ago. Imagine what might emerge within the next 100 years.

So if you care about the future of human civilization and if your goal is to do some good, you need to look at how to reduce existential risk. You would need to influence when and by whom technologies can be developed. You would need to speed up the development of 'good' technologies and retard the development of others such as designer pathogens for example.

How does this play out with a rise of machine intelligence which could result in Super Intelligence?

Machine intelligence will radically surpass biological intelligence (even if it is enhanced through genetic selection for example) one day. Experts find it difficult to agree on when exactly machines will reach the level of human intelligence. They estimate that there is 90% probability that human level artificial intelligence might arise around 2075. Once machine intelligence roughly matches human's in general intelligence, a machine intelligence takeoff could take place extremely fast.

But how can you control a Super Intelligent machine? What will happen when we develop something that radically surpass our intelligence and might have the capability to shape our future? Any plan we might have to control the super intelligence will probably be easily thwarted by it. Is it possible to have any gatekeeper that/who will make sure that the artificial intelligence will not do anything detrimental to us? The Super Intelligence would probably be capable of figuring out how to escape any confinement we might impose upon it. It might even kill us to prevent us from interfering with its own plans. We should also think about any ultimate goal that a Super Intelligence might have. What if its own goal is to dedicate all the resources of the universe to producing as many paper clips as possible?

0aastrategicrelevance2.jpg
Slide from Nick Bostrom's presentation: what Super Intelligence can do and how it can achieve its objectives (bigger image)

How can we build an artificial Super Intelligence with human-friendly values? How can we control it and avoid some existential risks that might arise down the road?

The forms of artificial intelligence we are familiar with can solve one problem: speech recognition, face recognition, route-finding software, spam filters, search engines, etc. A general artificial intelligence will be able to carry out a variety of challenges and goals. How can we male sure that it learns humanly meaningful values?

Nick Bostrom's new book Superintelligence: Paths, Dangers, Strategies will be published by Oxford University in June 2014 (You can pre-order it on Amazon USA and UK.)

0M1NE#1 - 2.jpg
M1NE#1

It would be convenient but unfair to reduce the work of Frederik de Wilde to its award-winning ultra dark, nano-engineered black painting. Just like Yves Klein collaborated with chemists to create the now iconic International Klein Blue, de Wilde worked with scientists in both Europe and the U.S.A. to nano engineer a material so dark that it absorbs all visible light as well as some invisible like infrared light. Quite aptly, the artwork is called Hostage.

0i1-nanopaont480x480.jpg
Nano Painting. Hostage

De Wilde further expanded his research into spectral behaviour and innovation at the atomic level with M1NE #1, a 3D sculpture so dark that it appears as if it were devoid of any volume. The artwork translates classified data gathered from Belgian coal mines into a structure that hides political dossiers and possibly commercial interests into abstract forms.

Frederik de Wilde in collaboration with Frederik Vanhoutte, SoN01R 1.0

In fact, de Wilde's investigations don't stop at nanotechnology, he also explores biotechnology, data networks, or any other scientific fields of research in order to uncover new frontiers of the intangible, inaudible, invisible. I was particularly intrigued by SoN01R for example. The work is a real-time visualization of true random numbers generated from a quantum mechanical system.

All of the above might sound abstract and highly conceptual but as the interview with the artist will demonstrate research into elusive energy measurements and other barely perceptible phenomena quickly gives rise to reflections about politics, art history, economic emergency, universe hacking and very practical innovations in 'clean' energy.


Nano Painting, Rice University Nano Lab, 2010

Hi Frederik! What makes nanotechnology a valuable field of experimentation for an artist?

Let's debunk some myths first. Nanotechnology is not new on itself. The Mayans used nano particles in their pottery, the Romans in glass, and so on. A great example is the Lycurgus cup made from translucent glass containing colloidal gold and silver particles dispersed in the glass matrix in certain proportions so that the glass has the property of displaying a particular transmitted colour and a completely different reflected colour, as certain wavelengths of light either pass through or are reflected. This is called surface plasmon resonance where photons interact with electrons. It's like a dance on subatomic level. It connects colour theorists like Da Vinci with Isaac Newton, Cézanne, Kandinsky, ...

In my case i most interested in creating a black body, an idealised body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The first artistic result was the artwork entitled "Hostage p.t.1" which won the Ars Electronica Next Idea Grant in 2010.

What changed dramatically is the level of control in the nano tech praxis. It's unprecedented and still evolving rapidly. Let's take a step back into time to make things more clear.

One of the seminal events in the history of nanotechnology is -ever jittery- physicist Richard Feynman's lecture entitled "There's Plenty of Room at the Bottom" at Caltech on December 29, 1959. Feynman considered the possibility of direct manipulation of individual atoms as a more powerful form of synthetic chemistry than those used at the time. Let's not forget John Von Neumann, one of the founding figures in computer science, concept of the universal constructor in his theoretical and mathematical frameworks of self-replication. This clearly inspired Feynman to suggest the possibility of self-replication from atomic level onwards.

The concept led also to dystopian projections and hypothetical end-of-the-world scenarios, out-of-control self-replication (nano-)robots consuming all matter on Earth leaving nothing but a ''gray goo'', a term coined by nanotechnology pioneer Eric Drexler in his book Engines of Creation (1986).

As an artist i am not only interested in the history of science -or connecting it to an art historical perspective, a source of inspiration, a practical tool, the technological innovation potential, and so on ..., but also, and this has been less exposed until now, from a societal point-of-view. We are in a time of fundamental transition(-s), great turbulence, ... our contemporary society (read also 'old' world) is crumbling, it's fundaments are shaking profoundly.

Nanotechnology offers me a context to reflect upon the idea of building up a society anew from scratch -or 'personalise' it by the level of individual control-, atom by atom sort of speaking ((I am well aware that we've heard this story before (e.g. Futurist Manifesto ;), but where governments currently overload us with rules, regulations and restrictions we should bend it to possibilities, personalisation, et al. If not anticipated in the future we'll be confronted with a higher frequency of massive upheavals, strikes, civil unrest and revolts. This time from the proletarians AND the middle class. That's the 99%.

Multinationals and corporations have the leverage to make governments change their agenda, but they won't as long as there is no economic urgency and clear business model. This model will need to grow from inside and from the bottom of the pyramid. This will take time but one can see this slowly happening.

0IMnanoblackmaterial.jpg
Nano Painting, Nano Black Material

0fscanningelectron.jpg
Nano Painting, Scanning Electron Microscope Image _ Nano Black Material

But what's in it for the scientists you collaborated with (i read you worked with NASA, the University of Hasselt and Rice University)? What made your research into ultra black valuable for them?

It's layered. Most valuable is bringing together a group of passionate inter- and transdisciplinary individuals. As an artist you are a free electron. I don't have to align myself so easily with rules and regulations, institutes, ... i can be 'wild' and that's a quality that is generally accepted and respected. This stimulates and facilitates cross linking, confrontations with different ways of seeing, other ways of experimentation, getting out of the comfort zone.

In the case of the Nano Black research it depends. Currently i am challenging my collaborators at NASA to grow CNT's on a three dimensional matrix, which is not easy to accomplish. The concrete result of this first experiment in this direction is M1NE#1. The sculpture is made by direct laser sintering of micro particles titanium. The artwork is based on highly sensitive (political and economic) data of the coal mines in Belgium, seven mines in total. After a half a year of lobbying, and signing documents, i finally achieved to get a hold of the data. The main restriction was not to represent the actual data but only 'subjective' data, whether it's a sculpture, painting didn't matter.

0M1NE#1 -1.jpg
M1NE#1

0small mine.jpg
M1NE#2

This said; it's all about challenging, maintaining and accelerating dynamics, growing connections: stimulating growth. Maybe i am also used as an excuse for failure, haha :).

Whereas the scientific world is still too much compartmented, an artist can add a more personal, holistic, ... approach. I am interested in models, whether it's mathematics, art, society, ... it doesn't really matter. That's the bigger picture i am interested in and scientists are very eager to discuss these matters but preferably in a well defined -and controlled- context. I think that's a pity, and also scientist should participate more in societal issues. It's one of my ambition to create more space for this issue by the means of setting up art, science and technology projects. This is a gradual process. Most of the time it ends up with a demonstrator but that's not enough for me. The next step is deduct or grow a model from it with a deeper impact on more societal levels and give it a shape.

I also read about potential industrial applications: photovoltaic systems, invisible airplanes (oh, please no!), telescopes coating, etc. Do you want to give more details about it?

When you have a material that absorbs all visible light, and even some spectra of the invisible light like infrared and UV light, it's logical to think about photovoltaic cells. If one can improve the efficiency of a solar panel then that's a real good thing. Participating in the clean energy discourse makes me feel good, having potential solutions imbedded in an artistic and crossover project is even better. Making objects 'invisible' or three dimensional objects appear flat like a cutout, augmenting a canvas or substrate, a three dimensional matrix or sculpture with an enhanced topography or nano coating that can act as a photovoltaic cell is certainly interesting from artistic, scientific and industrial applications point-of-view. Innovation thrives not only on single innovations but also combining and recombining ideas, techniques and technologies.

0NASABlck-Crcl #1 -1.jpg
Frederik de Wilde, NASABlck-Crcl #1, 2013

0NASABlck-Crcl #1.jpg
Frederik de Wilde, NASABlck-Crcl #1, 2013

The artwork entitled ''NASABlck-Crcl #1'' makes clear reference to Duchamp's readymades.

It's the most complete black body to date only applied in one telescope in space. This allows for less stray light which results in a sharper image. Yes, it would make a very good camera obscura.

The projects Quantum Objects, Quantum Foam and SoN01R explore true random numbers. Can you briefly explain what these true random numbers are? And what drew you to randomness?

Generating true random numbers is rather exceptional. Most random number generators are based on computer algorithms. Once the input conditions are known, one can reverse-engineer such algorithms which suggests a reproducible outcome. To be able to generate truly random numbers one would need a routine that can break the causality law, an observation of a source that acts without any or any knowable cause.

I've always been interested in the concept and notions of 'noise', again from different points-of-view (astrophysics, music, art, mathematics, societal, ...). The installation αTown #Lead Angels 1.0 is a fine example. Here i use uranium glass aka vaseline glass or Great Depression glass as a source for generation true random numbers. In the case of Quantum Objects, Quantum Foam and SoN01R i use quantum vacuum noise to generate true random numbers. It's hacking, or tuning into, the substrate of the universe.


αTown #Lead Angels 1.0

Reliable and unbiased random numbers are needed for a range of applications spanning from numerical modelling to cryptographic communications. It use will become more and more important in our contemporary society. For instance equations used at stock markets like the Black-Scholes equation should incorporate more noise, more randomness. That's why i developed the idea of social algorithms. Currently i am collaborating with Post-doctoral researcher Vincenzo De Florio to develop an art and science project that will demonstrate the application of such an algorithm. For the record; i am not a scientist or mathematician, but i do my best in trying to understand the big picture and specificities related to a certain research topic.

0Quantum Foam #2 [sphere] - Red Edition.jpg
Quantum Foam #2 [sphere] - Red Edition

0Quantum Foam #2 [sphere] - White Edition.jpg
Quantum Foam #2 [sphere] - White Edition

How did you go from exploring the super small to investigating the vacuum? Was it something logical for you?

I guess by getting lost, and connecting the pieces step-by-step. It's intuitive as much as logical.

One of my main sources of inspiration is the 'Powers of Ten' (1977), a cinematic scientific film essay by Charles and Ray Eames. In short; a set of pictures of two picnickers in a park, with the area of each frame one-tenth the size of the one before. Starting from a view of the entire known universe, the camera gradually zooms in until we are viewing the subatomic particles on a man's hand. I am trying to insert a less materialistic point-of-view in science by the means of art. It's not that i have a perfect marriage with science :)


Powers of Ten, 1977

You've collaborated with various research departments in universities across Europe and the United States. Which form did the collaboration take? Was this you bringing the ideas, explaining scientists exactly what you wanted them to achieve for you and then they worked in their lab behind closed door? Or do you, in some way, take a more active role in the lab processes?

Collaboration is a format, a template but at finer resolution it can take many shapes. I see also similarities but also differences in approach depending on the country etc. Sometimes it's a question, an idea or an image that pops up in my mind when confronted with scientific research that i resonate with. The next step is to get in contact with the scientist and pose your question, communicate your idea. Generally I include some reference projects so the scientist has a better idea of your approach, potential outcomes, ...but most of all that you are able to bridge the gap between art and science. This is crucial. You have to do your research and do your hours :)

In the best case i am invited for a residency, this enables me to stay for a longer time, get to know the people, daily routines but most of all getting hands on experiences and go deeper into the subject. You have to be in an ecology to understand it, get a feel of it. Blowing things up is a part of that too ;). This reminds me of Jean-Jacques Cousteau whom was asked in an interview why he blew up a part of coral reef when he was young. He answered that it was the only way to understand how a coral reef regenerates. Anyway, i wanted to produce the blackest artwork in the universe and i knew that Rice was and is the heimat of nanotechnology. In the case of developing the ''Hostage p.t.1" i went to Rice University in Texas Houston several times and collaborated with Prof. Pulickel, Robert and Daniel in the chemistry lab. They were already researching CNT's so that was a perfect match. Sometimes you have to be lucky too. The next step was to grow the array of vertical aligned CNT's uniformly and on a large enough substrate. The latter is very difficult as the ion sputtering rooms and chemical vapour depositing don't allow large samples. So for that time being we focused on creating a mosaic and going as black as we could. It's obvious that initially i was not allowed to be in the lab alone, hence i was accompanied by Daniel, a very promising scientist and entrepreneur, to help me out.

0UNPAINTED art fair 2014 booth view - inside.jpg
UNPAINTED art fair 2014 booth view

Ultimately i'm amazed at how brave you are to tackle such complex scientific fields. Science today seems to get increasingly compartmentalized with researchers specializing in various sub-disciplines. How can an artist approach these intimidating scientific fields? Is there a steep learning curve?

Forget being an artist, or pretend to be one. Be a person that is very interested in what the scientists do, be curious, make semantic connections, share you thoughts, ideas and feelings.

The more open you are the more chance you have to find like-minded people, they will help and guide you through topics that are hard to wrap your brain around. Sometimes making a sketch or drawing of the topic helps a lot. Knowing your limits is very important too.

I'm quite familiar with art and science initiatives, commissions, programmes and funding organizations in the UK but i know very little of what is at the disposal of an artist living in other European countries and wanting to work with scientists. What exists in Belgium where you live for example? Is this common for an artist to find funding and opportunities to work with research institutes?

Unfortunately our ministry of culture doesn't support yet artistic crossover with research and development. Which is a real pity. As the financial envelope for the arts becomes smaller and smaller i notice some conservative tendencies. That is very corrosive for the arts, which thrives on the niche, and is maybe a niche on itself. Stigmatising it is like stigmatising art itself. To come back to your questions; generally I am invited by a University, sometimes I co-invest myself to make the project and collaboration possible. With the University of Hasselt (UH) i have a long term commitment, this is often due to long term friendships like with Prof. Jean Manca from the UH. Currently i am also involved in some EU funded projects, most of them have a crossover DNA. Funny enough the initiative for crossover projects isn't an arts initiative but an initiative from the ministry of innovation, science and technology and Flanders DC. It's called CiCi and supports crossover projects.

More info here: http://www.flandersdc.be/en/cici-call

Also iMINDS offers an ART&D call.

More info here: http://www.iminds.be/en/research/start-a-project/artd-program

Thanks Frederik!

The new episode of #A.I.L - artists in laboratories, the weekly radio programme about art and science i present on ResonanceFM, London's favourite radio art station, is aired tomorrow Wednesday afternoon at 4pm.

0o-ENTER-900.jpg
WE COLONISED THE MOON, Enter At Own Risk, presented by The Arts Catalyst in Republic of the Moon, FACT Liverpool 2011

My guest in the studio tomorrow will be Nicola Triscott, the founder and Director of The Arts Catalyst, a UK arts organisation that sets up events, curates exhibitions, releases publications and commissions ambitious artworks that  engage with science. The Arts Catalyst, believe or not, is celebrating its 20th anniversary this year so we'll be talking about the art&science scene of the early 1990s and also about the embassy for The Republic of the Moon which the Arts Catalyst has opened a few days ago at the Bargehouse, on the Southbank.

I've been inviting artists working with the arts catalyst to the resonanceFM studio ever since i started this program so i thought that it would only be fair to invite its founder and director in the studios of resonanceFM.

The radio show will be aired this Wednesday 15 January at 16:00, London time. Early risers can catch the repeat next Tuesday at 6.30 am. If you don't live in London, you can listen to the online stream or wait till we upload the episodes on soundcloud one day.

Photo on the homepage: Leonid Tishkov, Private Moon in Formosa, presented by The Arts Catalyst in Republic of the Moon, London 2014.

Republic of the Moon is on view until 2 February 2014 at the temporary residence of The Arts Catalyst: Bargehouse, Oxo Tower Wharf on London's South Bank.

The new episode of #A.I.L - artists in laboratories, the weekly radio programme about art and science i present on ResonanceFM, London's favourite radio art station, is aired this Wednesday afternoon at 4pm.

0X&Y credit Benjamin Ealovega.jpg
X &Y. Image Benjamin Ealovega for the Science Museum

Today's guests are not the usual suspects as they are scientists using art to explore and communicate mathematics. Marcus du Sautoy is the Simonyi Professor for the Public Understanding of Science and Professor of Mathematics at the University of Oxford. Victoria Gould is a mathematician and actress.

Marcus and Victoria have just spent several days and evenings at the Science Museum in London to perform X &Y, a theater show that use mathematics, humour and theatre to navigate the known and unknown reaches of our world and ultimately to approach some of the biggest philosophical and scientific questions we might encounter: where did the universe come from, does time have an end, is there something on the other side?

I saw one of the last London performances fearing everything would fly high above my head (math classes are far far away from my mind now) but the whole show is incredibly accessible, whether you're a child or a retired professor of physics. I'm neither of those and i found X&Y surprisingly entertaining. I even enjoyed the language of equations and laughed. About mathematics! In the process, i learnt that zero is a relatively new number and that there are many sorts of infinity.

If you've missed the shows, you might want to head to the Science Festival in Manchester. I know i might. The programme is very tempting: an exhibition about contemporary architecture in Antarctica, retro computing events, a talk about the application of quantum physics on communication technology, a presentation about controlling brains from the outside, etc. And a series of X&Y performances from October 30th to November 3rd.

0X&Y credit Benjamin Ealovega (1).jpg
X &Y. Image Benjamin Ealovega for the Science Museum

0X&Y credit Benjamin Ealovega (3).jpg
X &Y. Image Benjamin Ealovega for the Science Museum

The radio show will be aired this Wednesday 23rd of October at 16:00, London time. Early risers can catch the repeat next Tuesday at 6.30 am. If you don't live in London, you can listen to the online stream or wait till we upload the episodes on soundcloud.

Last weekend i was in Leiden, a short train trip away from Amsterdam, for the opening of an exhibition of the winning projects of the third edition of the Designers & Artists 4 Genomics Award.

The DA4GA give artists the opportunity to develop ambitious projects in cooperation with life science institutions carrying out research into the genetic makeup of people, animals, plants and microorganisms.

0overhead_biopsy.jpg
Charlotte donating skin to Christine Mummery's laboratory in front of an audience at the Theatrum Anatomicum at the Waag Society in Amsterdam. Photos by James Read and Arne Kuilman

0WAAG © James Read-0428.jpg
Charlotte donating blood to Christine Mummery's laboratory in front of an audience at the Theatrum Anatomicum at the Waag Society in Amsterdam. Photos by James Read

One of the recipients of the award is Charlotte Jarvis who used her own body to demystify the processes and challenge the prejudices and misunderstandings that surround stem cell technology.

Ergo Sum started as a performance at the WAAG Society in Amsterdam. In front of the public, the artist donated parts of her body to stem cell research. Blood, skin and urine samples were taken and sent to the stem cell research laboratory at The Leiden University Medical Centre iPSC Core Facility headed by Prof. Dr. Christine Mummery.

The scientists then transformed the samples into induced pluripotent stem cells, which in turn have been programmed to grow into cells with different functions such as heart, brain and vascular cells.

The whole process used the innovation which earned John Gurdon and Shinya Yamanaka a joint Nobel Prize last year. The two scientists are indeed behind the discovery that adult, specialised cells can be reprogrammed and turned back into embryo-like stem cells that can become virtually any cell type and thus develop into any tissue of the body.

The pluripotent stem cells offer an alternative to using embryonic stem cells, removing the ethical questions and controversies that surrounded the use of embryonic stem cells.

0braincells_web.jpg
Brain cells grown from stem cells derived from Charlotte's skin

IMGP2589.jpg
Charlotte Jarvis, Ergo Sum, 2013 (exhibition at Raamsteeg2 in Leiden.) Photo by James Read

But let's get back to Charlotte's stem cells. Copies are now kept by the university for scientists to use in their research. And because the cells can be stored for an unlimited period, they are immortal. The ones that are on view at the exhibition in Leiden right now have to be kept alive by a team of scientists who regularly visit the exhibition space to care for the cells.

The synthesized body parts (now brain, heart and blood cells) are kept in an incubator made especially by a company specialized in museum displays as traditional incubator don't have a window that would allow the public to have a peak inside. The cells are accompanied by videos, prints of email exchanges, photos and other items that document the whole story of the project.

Ergo Sum is a biological self-portrait; a second self; biologically and genetically 'Charlotte' although also 'alien' to her - as these cells have never actually been inside her body.

IMGP2658.jpg
Charlotte Jarvis, Ergo Sum, 2013 (exhibition at Raamsteeg2 in Leiden.) Photo by James Read

IMGP2636.jpg
Charlotte Jarvis, Ergo Sum, 2013 (exhibition at Raamsteeg2 in Leiden.) Photo by James Read

IMGP2548.jpg
Charlotte Jarvis, Ergo Sum, 2013 (exhibition at Raamsteeg2 in Leiden.) Photo by James Read

You first idea was to donate your eggs for the project but the scientists told you this might not only be illegal but also unnecessary. Could you explain why the eggs were unsuitable for the experiment and what the lab used in the end?

In the first instance I was unable to donate an egg because of the birth control I take. I have a three monthly injection (the DEPPO) which works by stopping egg production. It can take a year for your body to start producing eggs again after stopping the DEPPO, so I would not have been able to produce an egg in time for the project.

However, there were also ethical reasons for not donating an egg. I believe fervently in the use of embryos for scientific research, as of course do the scientists I work with. They have to fight for the right to use embryos in their research and under no circumstances would I do anything to jeopardise that. The use of embryos for artistic purposes is a different moral question. I felt that it would have been wrong (and potentially damaging to the scientists working on the project) to confuse those two ethical questions by making an art project utilising the scientific method for making embryonic stem cells.

What we used instead was stem cells derived from adult tissue. These are called Induced Pluripotant Stem Cells (IPSCs) and it is this technology that won the Nobel Prize last year. I donated skin, blood and urine to the lab. The lab was then able (using this new and wonderous technology) to send those cells back to how they were when I was a foetus - to turn them back into the stem cells they had been roughly 29 years ago. You could call it cellular time travel! I find our ability to do this completely awe inspiring.

0scars2_small.jpg
Scars from biopsy 11/03/13

Now that you've finally met your 'second self, your dopplegänger, do you feel you have some kind of connection to it?

Seeing my heart cells beating was a unique experience - especially the first time I saw it. There is something that feels distinctly 'alive' about the beating heart cells and something quite extraordinary about seeing part of your own heart beating and living outside your body. But in general I would say that I feel no more connected to my second self than I would any other self portrait. I do not feel that these parts of me are sacred in some way, or even that they really belong to me in anything other than the genetic sense. That is really the point of the project - to question how we build our identity as humans and how that might change in the future. This may sound obvious, but I have learnt that I am more than the sum of my parts; that just because something has my heart, my brain and my flowing blood it is not 'me' and it is not a human.

Thanks Charlotte!

IMGP2647.jpg
Charlotte Jarvis, Ergo Sum, 2013 (exhibition at Raamsteeg2 in Leiden.) Photo by James Read

IMGP2681.jpg
Charlotte Jarvis, Ergo Sum, 2013 (exhibition at Raamsteeg2 in Leiden.) Photo by James Read

Ergo Sum and the other winning projects of DA4GA are on view until 15 December at Raamsteeg2 in Leiden, in The Netherlands. Ergo Sum is funded by the Netherlands Genomics Initiative.

 1  |  2  |  3  |  4  |  5  |  6 
sponsored by: