0Bacteria_cells_photoD.Silina.jpg
Installing bacteria battery cells for the installation. Photo: Daina Silina

The networked sound installation Biotricity No.5 uses a fairly new "green energy" technology called microbial fuel cell to explore the intricate relationship between nature and technology, biologic systems and electronic networks.

The installation consists of neatly aligned bacteria-fuel cells. Once they are connected together, the cells form a mini bio-power plant that turns into sound the process of generating electricity from bacteria living in mud and water.

>BIOTRICITY. Bacteria Battery No 5

Biotricity No.5 was developed by Rasa Smite, Raitis Smits and Martins Ratniks together with sound artist and composer Voldemars Johansons and young biologists from the University of Latvia.

Biotricity No.5 was also the starting point of a workshop organized by Baltan Laboratories in Eindhoven during The Dutch Technology week. Participants learnt how to make a cell from bacteria living in soil and waste water and how to assemble a 'bacteria-battery' system. But because the event was as much about art as it was about science, participants were also invited to develope collaborative and conceptual ideas for "bacteria-battery" future design, tools for measuring and modulation that can be used for artistic interpretations, sonifications and visualizations.

Since i was curious about the possibility for 'everyday people' to create energy using mostly muddy water, and how the experimentation could translate into artistic concepts and projects, i asked Rasa Smite to talk to us about her experiments in bacteria energy. Rasa is a media artist-innovator and network researcher based in Riga, Latvia. She is chief-editor of Acoustic Space journal series, and organizer of the Art+Communication festival in Riga. She is also is an Associate Professor of New Media Art Programme and researcher at Art Research Lab (MPLab)/Liepaja University and the director of RIXC, The Center for new media culture in Riga.

0Voltage_bacteriabattery_photoR.Smits.jpg
Bacteria Battery in the third day (after the installed was set up) -- already 3.22 Volts! Photo: Raitis Smits

Hi Rasa! During the Biotricity workshop at Baltan Laboratories in Eindhoven, participants learned how to make a cell from bacteria living in water and to built 'bacteria-battery' system. How easy is this exactly? Do you need to use sophisticated tools and materials hard to find in shops or on the internet?

We are using so called microbial fuel cell (MFC) technology that generates electrical energy from living micro-organisms that can be found in the commonly available resources such as, for instance, waste water, soil or mud. Experimenting with 'bacterial energy', we intend to use readily available components in order to make this technology more accessible and realizable for everyone interested in green energy production. All you need for building these batteries you either can buy in shops or build yourself.

0Workshop_photoR.Smite.jpg
Raitis Smits gives an introduction on the workshop "Biotricity -- generating energy from wastewater". Photo: Rasa Smite

0Workshop2_photoR.Smite.jpg
Raitis Smits is showing how to make electrodes and build containers for Bacteria Battery. Photo: Rasa Smite

0a9instash4abd.jpg
Voldemars Johansons introduces the "Biotricity" workshop participants how to sonify the electrical signals produced by bacteria. Photo: Boudewijn Bollmann

Could you tell us briefly about the kind of experiments participants developed during the workshop? Do you have photos of the process and of what has been made?

A workshop itself is an experiment in terms of how much electrical energy we manage to get from the self-built cells. There are several components behind this process. The most important are the bacteria themselves, who live in water sediments, namely, in mud. We are curious how powerful each time the specific mud will be. Collecting the mud as well as thinking and deciding from which site to do so, usually is also a part of the workshop. In Eindhoven we used our own pre-collected mud from the pond in Genneperpark next to the Dommel river, as it was suggested by local expert - workshop organizer Baltan Laboratories.

For building a cell, participants use 2 plastic containers (in size of about half a liter or one liter) - one with a mud and the other one with a (clean) water. We put inside electrodes in both containers, which consist of stainless steel mesh and carbon material (which participants can make themselves by burning any cotton-based material). Then we build agar or jelly bridge between both cells as we need semi-penetrable 'connector' between those two. In the dirt-container we pump out all oxygen, so the bacteria who are splitting organic matter into smaller substances are now producing hydrogen protons and liberate electrons (which otherwise would be 'taken' by oxygen). The protons are traveling through the jelly bridge to the clean water (towards the oxygen), while we can collect electrons from the dirt-container by using the electrode. Now we can get electricity in outer chain and to connect there LED light or other small-voltage consuming devices.

As the workshop in Baltan was related to our exhibition work, the second part of the workshop was led by sound artist and composer Voldemars Johansons. He introduced workshop participants how to sonify electrical signals and to make sound structures representing and interpreting electricity generation process.

0Mud_photoD.Silina.jpg
Pre-collected mud from the pond in Genneperpark next to the Dommel river in Eindhoven for the installation and workshop. Photo: Daina Silina

How did you and the other artists you work with familiarize yourself with microbial fuel cells? Self-experimentation? Study with scientists?

We are used to say that we are artists-researchers and cultural innovators, who work with the science and emerging technologies. But as art has different aims then the science, then collaborative work with scientists is more important in the beginning. But then, at the certain stage, art has to fulfill its own tasks and it takes its own path. If we trace back to Renaissance, this path (of art) was not yet separated from the science then. Later, when science became the only mean of determining truth and explaining a 'real' world, art remain in the position of dealing with more uncertain phenomenon, emotional and subjective worlds. Just now, very recently, when our modern society has become even much more complex, it becomes clear that there are no any single discipline which could deal with this complexity. Therefore, art as research with its imaginative, intuitive, emotional and subjective approaches again is getting a recognition as a complimentary discipline to the sciences. More then that we would like to argue, that changing role of art in our society is the one of a catalyst - for social, scientific, and technological transformations.

0installation2_photoR.Smits.jpg
Bacteria Battery in the first day (after set up) produced just 2.24 Volts. Photo: Raitis Smits

0Installtion_photoR.Smits.jpg
Bacteria Battery - networked bio-energy & sound installation by Rasa Smite and Raitis Smits in collaboration with Voldemars Johansons. Photo: Raitis Smits

Baltan will also exhibit an installation you developed together with sound artist Voldemars Johansons and video artist Martins Ratniks: BACTERIA BATTERY No.5. Could you briefly describe the piece and how it works?

For Baltan exhibition we use self-built 12 microbial fuel cells, each of which generates small voltage of electricity - 0,2-0,7 V. Connected together they create mini bio-energy power station. By using micro-electronics, the signals from bacteria electricity generation is being processed and interpreted into multiple channel sound structures. With sonification we also are aimed at exploring interrelation between biology and computing. In order to make visible the micro-environment, where the bacteria live, we also have made a video from images taken with the electronic microscope.

What exactly can artists bring to the discourse of green energy production? How different is their perspective and approach compared to the one of a scientist?

We, artists not necessarily have to make the models for batteries or prototypes for infrastructures - however we are also keen on doing so. More relevant is that artists are questioning and reflecting. Artists are approaching energy technology issues from social, cultural and ecological perspective, thus reaching more diverse levels in social structure of our society. For instance, as a part of our artistic research project on Bacteria Battery last year we organized series of collaborative working sessions titled "Biotricity" together with both scientists and local communities in very different settings. We did first bacteria battery tests in science laboratories at Latvian University.

Later together with artists the scientists participated in our temporary 'rural-labs' in country side of Latvia, where we explored Latvian vast lands and available resources there for future energy infrastructures (global-local, peer-to-peer, information-energy etc.). For instance, we organized "AppleThink" event where along with apple-juice-squizing workshops and an apple-market, young biologists where showing to local village people how to build bacteria battery from apple-waste.

But most exciting was our experiments to install bacteria battery outdoors, in the pond of our cottage. In the pond, one electrode is installed in the bottom in a mud, while the other one is floating on a surface, in clean water. Because of the larger surface in the water of lakes or oceans, it is more easy to get more power then in half a liter containers. For instance, this technology is used in deep ocean research. However, this technology is also used for powering very small medical devices, as these bacteria also are living in human blood. Yet, we think, that this technology is particularly unique because it contains a potential to be used in remote, rural and undeveloped areas, as well as for building autonomous and self-sustainable infrastructures.

While looking at the video of BACTERIA BATTERY No.5. i was surprised by the size and number of batteries. This form of green energy doesn't seem to be efficient. But is it because the research regarding bacteria batteries is still in its infancy or because you didn't have access to more sophisticated tools and materials to build them?

Well, both, in a way. Yet our primary interest with this project was to obtain a knowledge on how to build a mini bio-power station by ourselves. Also, we are not so much interested in 'instrumentalizing' this technology (in terms of how to make it more efficient) as it is rather the engineers' task. For us half a liter or liter big size cells of which the battery was built, seem just a right way to represent the alternative ways of our visions on future energy infrastructures, which can be produced from local resources, and connected as peer-to-peer networks - locally and globally.

For instance, this technology has been used already in rural Africa, where people for the first time could get in their homes could plug-in LED bulbs and and charge cell phones in five-gallon dirt-powered buckets. So, we really like that this technology is so robust, and that it has so minimal requirements such as mud, dirt, waste, water - at least some of which can be found anywhere on this world, even in the most remote and inaccessible sites.

More then that, we feel affected by the fact that the electricity in this technology is produced by living micro-organisms. Building our installations together with biologists, we realized that the bacteria electricity generation process is not so stable and not always predictable. It depends on the environment, for instance the level of heat, and most likely on some more not yet discovered reasons. And then it came to our mind that probably we should negotiate with the bacteria as we did in our Talk to me (2010-2012) project, where we invited people to talk to the plants encouraging them to grow faster, taller and more beautiful.

As bacteria are living organisms, very old ones and very important for global ecosystem, and if we want them to make more energy... may be we should learn to communicate with them? More pragmatically, but also scientists see the potential of this technology, as they are carrying out their research on how exactly the bacteria conduct an electrical charge and this will help them make this technology more efficient sooner or later.

0_Installation_RasaRaitis_photoB.Bollmann.jpg
Rasa Smite and Raitis Smits at their Bacteria Battery installation in the exhibition organized by Baltan Laboratories during the Dutch Technology Week (May 31 - June 7, 2013) in the Schellensfabriek, Eindhoven. Photo: Boudewijn Bollmann

Why is it called BACTERIA BATTERY No.5.? is this the 5th version of it? Are you planning to go further with the Bacteria Battery project? with a version number 6? How would it be like?

It just happened that our first exhibition was the fifth collaborative session with young biologists from the Latvian University. This exhibition, where we showed "Bacteria Battery" installation for the first time was RIXC's Art+Communication festival 2012 which with the title Art of Resilience took place in Riga, in October 2012. The installation was a result of four previous work-sessions, which took place throughout the year 2012 in different settings - in science laboratories as well in rural areas and local villages in Latvia. We still have used number 8 in the title at recent WRO2013 festival exhibition, but we stopped it. More relevant was the number 5 - as it was our first result after longer research process.

Currently we are preparing the installation for a forthcoming exhibition on theme of Synthetic Biology at Ars Electronica center. Organizers already have collected a mud for us from the dirt in the streets of Linz city after the recent flood. This Summer we also will be continuing experiments in pond. We will install several cells, which will be connected to the Internet, streaming live images and data from electricity generation process. Thus we will be monitoring electricity generation process in out-door conditions via the Internet all year long, and it seems, that we are the first ones, who has done something like this. What we experienced in the previous experiments is that the microbes actually prefer being in natural conditions, even in cold winter, under the ice, electricity generated by pond is more stable then one in containers. Minimal fluctuations we only could observe in the mornings and evenings. Live stream from the pond-battery is also a part of the installation in Linz.

We regularly are updating news on bacteria research process and results at Renewable network blog site: http://renewable.rixc.lv, and on Facebook: rixcriga.

Thanks Rasa!

More art projects using microbial fuel cell: Nomadic Plants.

Sponsored by:





Adam Brown is a conceptual artist working with scientists to create art pieces that use robotics, molecular chemistry, living systems and emerging technologies. Years ago, i saw one of his works at Emoção Art.ficial [Art.ficial Emotion], a Biennial of Art and Technology in Sao Paulo. The robotic sculpture, called Bion, explored the relationship between humans and artificial life. Fast forward to May 2013 when i am aimlessly clicking around and stumble upon one of his most recent pieces. This time, the project doesn't use swarms of responsive synthetic "life-form" but bacteria that, over a period of one week, process the toxins of gold chloride and produce nuggets of 24-karat gold.

0aGWML_medium.jpg
Adam Brown in collaboration with Kazem Kashefi, The Great Work of the Metal Lover, 2012

The Great Work of the Metal Lover earned Brown and his collaborator microbiologist Dr. Kazem Kashefi world-wide media coverage, an Honorary Mention at Ars Electronica as well as a Special mention at VIDA.

Brown brings together science and art into each of his works, from the initial concept up to the final realization. His artistic practice not only challenges scientific inquiry but it also comes with undeniable aesthetic qualities (something that is sometimes little more than a second thought in artworks that make use of the latest advances in science and technology.) Simply put, his artworks are beautiful to look at. While the Bion sculpture (below) is as stunning as it is smart, Origins of Life: Experiment #1.x (a working scientific experiment that builds on Miller-Urey's 1953 experiment to draw attention to the artifice and aesthetics of experimentation) neatly hangs scientific instruments and processes on a wall as if they were museum paintings.

0a0si3gases.jpg
Adam Brown in collaboration with Robert Root-Bernstein, Origins of Life: Experiment #1.x (detail), 2010

0aaabion01-sig06.jpg
Adam Brown, in collaboration with Andrew Fagg, Bion, 2006-present

Brown is an Associate Professor at Michigan State University where he created the Electronic Art & Intermedia department. He is also a Research Fellow at the Institute for Digital Intermedia Arts at Ball State University, and serves as an Artist in Residence for the Michigan State University BEACON (Bio/Computational Evolution in Action Consortium) project.

I interviewed him via email just before he flew to Sydney to attend the ISEA Symposium on Electronic Art.

0a4close2_GK.jpg
Adam Brown in collaboration with Kazem Kashefi, The Great Work of the Metal Lover, 2012

Hi Adam! What you've achieved sounds almost like a fantasy... Using bacteria to turn valueless material into gold. I'm sorry for the very mundane question but why don't you make it a full time activity? You could be drinking cocktails on your yacht, on your way to a golf game with Donald Trump instead of answering my questions right now...

This is probably one of the most asked questions that I have received about this piece. The other question that is often asked is if I can share with people how to "make gold." The potential to make gold and accumulate wealth is a very powerful motivator of the human condition. Even Forbes wrote about it. Fortunately, the process is not cost effective at this point. I have to buy the soluble form of gold I put into the reactor and, since the bacteria only grow in anaerobic conditions (no oxygen), I also have large expenses in creating the conditions for their growth.

Of course the natural follow up question is if it is possible to harvest the dissolved concentrations of gold in the oceans (which contain about 10 parts per million). It might be possible, but it would take a great deal of expense to scale up a system that would be efficient and cost effective. However, this is not something that I am interested in doing. What would be the environmental costs of engaging in such an activity? With our limited knowledge of the oceans ecosystem it is unclear what would happen to the ocean life if it were depleted of dissolved gold. As an artist, I'm more concerned with probing and questioning the potential impact of our ability to engineer and control nature.

0a0a0a0GWML_medium2.jpg
Adam Brown in collaboration with Kazem Kashefi, The Great Work of the Metal Lover, 2012

0aaaaflakesc29fee8a8851.jpg
Gold flakes made by Adam Brown and Kazem Kashefi

What brought you to alchemy? A nostalgia for an ancient quest or the mere curiosity to explore what an artist can do with modern microbiology?

Alchemy is a topic that I have been interested in for quite a long time. Alchemy incorporates both a spiritual, creative and scientific pursuit all in one. As an artist of the 21st century working with biological systems, alchemy feels like an appropriate model of reference.

At the height of Alchemy during the time of the European Renaissance the world appeared to be much less defined. Artists were at the same time engineers, architects, alchemists, chemists. It was possible for a single person to strive to be the universal person and have relatively deep knowledge of many fields. Of course times have changed, complexity has grown and specialization has become more necessary. Newer technologies including augmented memory and instantaneous access to information have changed the way artists work. Now instead of being the total person one can employ collaborative practice to venture into territories that were previously inaccessible. This changes the role of the artist to one more akin to manager or director.

I also like the poetics of possibly solving the ancient alchemical problem of the philosopher's stone using modern microbiological science. Interestingly, the process does have some overlap to the description provided by alchemists describing the philosopher's stone. One would know when they were getting close to transmuting base metals into gold because the solution would turn a redish/purple color called "rubedo." The bioreactor of the GWML turns a purplish color when the microbial community is precipitating gold.

You developed the work in collaboration with Kazem Kashefi from the Department of Microbiology and Molecular Genetics at Michigan State University. What form did the collaboration take exactly? Was it you dictating what needs to be done and the scientist was executing your instructions. Or is the experience more hands-on from your part? With a more critical feedback from Dr Kashefi?

The relationship was hands on and mutualistic. One of my major interests is in origins of life research. This led me to extremophiles as they are probably some of the first forms of organized life on the planet and to Dr. Kashefi (Kaz). I read a paper he wrote in 2000 about how anaerobic extremophile microorganisms have the ability to precipitate heavy metals and even gold. I asked him if he thought it possible to devise a system capable of producing enough gold that one could hold in one's hand. This was the beginning of the collaboration. Over the course of a year, Kaz and I conceptualized how to construct a sustained culture capable of this task. He taught me the lab bench practices to, culture, grow anaerobic microorganisms. I designed, conceptualized and built the installation; Kaz led the scientific inquiry but we practiced the science together.

0aexmedium2_GK.jpg
Adam Brown in collaboration with Kazem Kashefi, The Great Work of the Metal Lover, 2012

Unlike many works that merge art and science which outcome only appear in art publications, articles about The Great Work of the Metal Lover also appeared in science magazines. So what makes the piece appealing to the scientific community?

One of my goals as an artist, especially when it comes to collaboration is make work that has a high degree of mutuality between the respective disciplines. While it is not always the case, when working collaboratively I like to try to make contributions to the various fields of research that are represented. So, in this case, it is important to not only make contributions to the arts, but also to the sciences. The GWML does tap into interesting science in that we have shown that the microorganism is able to survive and even flourish on much higher concentrations of gold chloride than has ever been reported (ten fold in fact). Secondly, the research is relevant to scientists that are interested in the possibility of metabolic process being responsible for mineral production. Finally, novel uses of microbes, including genetically modified versions, are a hot topic for research at the moment; scientists are looking at biotechnologies to do everything from bioremediation, to microbial pharmaceuticals, to even energy production. Of course, gold does have a universal appeal, having been coveted by most people; scientists are not excluded from this bias.

0aa0illuminating.jpg
Adam Brown in collaboration with Kazem Kashefi, The Great Work of the Metal Lover, 2012

The artwork doesn't stop at creating gold nuggets, it also features images made using a scanning electron microscope and an ancient gold illumination techniques. Could you explain us what the process involved and what the images represent?

The Scanning Electron Microscopic (SEM) images depict the microorganism Cupriavidus metallidurans creating the nanoparticles of gold within a biofilm. The prints function conceptually to provide objective proof that the claims of gold production are indeed authentic and act as a literal manifestation of combining ancient practice with modern scientific imaging. They also comment on scientific objectivity as well. Most images that we see made by an electron microscope are altered or enhanced in some way, usually using an application like Photoshop to add color and adjust contrast. The prints that I am producing are also enhanced. The only difference is that I am highlighting the location of the gold using the gold produced in the bioreactor in the image by adding gold to the surface of the print.

0a0ajfull-view.jpg
Adam Brown in collaboration with Robert Root-Bernstein, Origins of Life: Experiment #1.x, 2010

The description of the work Origins of Life: Experiment 1 opens on a quote by biologist E. O. Wilson "The aim of art is not to show how or why an effect is produced (that would be science) but literally to produce it."
What is your understanding of the quote or how does the artwork illustrate it?

The quote illustrates a close alignment between art and science and that the practices are more connected then disconnected. The artist wishes to create a phenomenological output while the scientist's main goal is to understand the phenomenon: a complementary/mutualistic relationship; an epistemological difference signifying that there are many more commonalities than differences. This once again ties into the discussion of the previous question about collaboration and mutualism. Origins of Life is an installation and a performative re-enactment of the Miller experiment that attempts to quite literally depict this relationship. It is in essence a contextual problem filled with an epistemological shifting perspective.

0a0a0night-shot-close.jpg
Adam Brown in collaboration with Robert Root-Bernstein, Origins of Life: Experiment #1.x, 2010

0poster_origins.jpg
Adam Brown in collaboration with Robert Root-Bernstein, Origins of Life: Experiment #1.x, 2010

The Great Work can be summed up in a catchy headline, but Origins of Life cannot be reduced so easily to one sentence. Not everyone knows about the Miller-Urey experiment for example. So how do you manage to engage a scientific audience with an artwork and vice versa: how do you get the attention of art lovers with a work that deals with scientific theories?

True. Not everyone knows about the details of the Miller experiment, but big questions such as "where do we come from?" and "how did life begin?" have a much greater universal appeal overlapping with philosophy, religion, art and science. You don't have to know anything about Miller-Urey or theories of how life originated to be fascinated by an apparatus that makes lightning and thunder, bubbles and boils, gleams and glistens and mysteriously converts a tank full of gas into brown-colored goo. Once interested, you can get the scientists to think about the artistic aspects of their practice and the artists to think about creating life as a metaphor for the creative process itself. The origins of life question is also what makes us human.

0aextraction2.jpg
Adam Brown in collaboration with Robert Root-Bernstein, Origins of Life: Experiment #1.x, 2010

_a02_imillermg0106.jpg
Stanley Miller working in the lab where he simulated atmospheric conditions similar to those on Earth 3.5 billion years ago and created organic compounds. © Bettmann/Corbis

You also defined the project as being "open source", as it 'invites contributions and participation from other scientists.' If find you very brave. not many artists would be comfortable with the idea. Why was it important to you to leave them this open door instead of keeping the project stable and immutable? Could you tell us how and if scientists have contributed or pushed it further and, more generally, how they have reacted to the work?

Once again, it goes back to the idea of collaborative practice and mutuality and started out as a collaboration with the scientist Robert Root-Bernstein. While it is important for me to have some conceptual ownership over the work, it is also important to attempt to solve the mystery of how life started on the earth. And technically, the original scientific experiment does not belong to me either as it is an appropriation from Miller. Are not the under-pinnings of the scientific method that of "open source"?

I have been interested in the Miller experiment since I was in high school. The original experiment enacted by Miller in 1953 never seemed to make much headway after the initial experiment; that is the production of amino acids from inorganic material. Perhaps this was a result of available technology of the time. When Miller died in 2008 I felt like it was an opportunity to continue with the project. There are many adaptations and further experiments that were never realized or maybe thought of: such as adding a phosphorus source like salt or even running the experiment for longer then a week. Since trying out some of these modifications we have synthesized Adenosine triphosphate (ATP) the power source of cellular life as well as a building block of DNA and also have shown evidence of the production of lipids which are the materials that make up cellular membranes.

Most scientists have been very positive about the project. They realize that scientific funding agencies are very conservative and can only fund what will obviously work. But what we already know will work doesn't help us progress in our understanding. Engaging in the project as a performance lets us break out of the constraints that the scientific peer review system imposes so we can try the kinds of experiments most origins of life scientists would really like to try.

In fact, one scientist who had invented an ultra-sensitive ATP-measuring device, donated one to us so we could test whether we could make ATP along with amino acids. Overall, the scientific community has received the work very positively. Origins of life research in general has massive appeal. It is inspirational to scientists and artists both.

Any upcoming project, exhibition, areas of investigation you'd like to share with us?

I have a few projects in the works. I will definitely share them with you and We-Make-Money-Not-Art when they are ready to be released in the near future.

Yes, please! And thank you for your answers Adam.

redchapIMAG5771.jpg
Elements of the Fish Bone chapel being 3D printed

If you're an artist or designer interested in applying your creative skills to life sciences, chances are that you've heard about Designers & Artists 4 Genomics Awards, an international competition that invites artists and designers to submit proposals to a jury of experts and develop them in close collaboration with The Netherlands most prestigious Life Sciences research institutes. The outcome of the competition range from the outrageously bold (the now famous bulletproof skin) to the ambitiously eco-friendly.

The winners of this year's edition of the competition are Charlotte Jarvis who recently talked to me about her Ergo Sum project, Howard Boland and Laura Cinti with The Living Mirror (more about this one soon, i hope) and Haseeb Ahmed who is planning to digitally fabricate a Fish Bone Chapel.

The artist is teaming up with the Netherlands Toxico-Genomics Center and Prof. Jos Kleinjans to build an architectural structure which, as its name suggests, will be made of fish bones. The vertebrae vaults, scaled walls and beating circulation systems of this architecture are derived from enlarged 3D prints and the skeletal structure of fish exposed to mutagenic toxins. Haseeb is working with the zebra fish, an animal often used for genetic testing as it is technically not considered to be animals for the first 5 days of their life

Ultimately however, the work also asks whether we can see past the dangerous connotations of mutation and regard it as a medium to generate new forms.

0azebralet1_1280.jpg
Zebra Fish altered exposed to toxins

rougeIMAG5775.jpg
Elements of the Fish Bone chapel being 3D printed

The more i read about the project, the more curious i grew so i contacted Hasseb Ahmed who patiently answered my many questions:

The Fish Bone Chapel draws a historical connection with the Capuchin Crypt located beneath the church of Santa Maria della Concezione dei Cappuccini in Rome. The crypt is decorated with the skeletal remains of 4,000 bodies believed to be Capuchin friars buried by their order, as a silent reminder of our own mortality.

Hi Haseeb! Your project, The Fish Bone Chapel, 'is a hybrid building, existing of fish bones.' I'm sorry but i'll have to start with the most mundane question because i imagine a chapel to be rather big and i suspect your final prototype might not rise to ambitious heights. So how tall, how big can the chapel be? And will it adopt a shape that people associate with the one of a chapel?

The Fish Bone Chapel is indeed the scale of a building. The goal has always been to create a spatial experience in which one can literally inhabit genomics research and in particular the mutations in Zebra Fish skeletons induced by exposure to toxins from embryo to adult.

My work will be sited in the atrium of the the current depot of the Naturalis Museum and former Royal Museum for Natural History built in the early 1900's. This atrium already has a kind of pseudo-Dutch Protestant religious architecture complete with niches, vaulted ceilings, and chandeliers. However, instead of religious iconography it features iguanas, snails, and fish. My aim is to create works that build onto this architecture with arches of my own, ornaments, and chandeliers so that the space appears as though it was made to host the Fish Bone Chapel all along. My reference is the Capucine Bone Chapels of Southern Italy which use the bones of former Monks to construct architectural features. In my case it's Fish not Brothers. That was one concept of Life and Death given by Catholocism and I want to address the new intermediate stages of life and death brought about by Genomics research and its legal apparatus.

Interesting enough the central 'altar piece' is at the base of a stairwell often drawn by M.C. Escher in his labyrinthine works and I will play up on this as well.

drawingIMAG4610.jpg

The description of the project also mentions beating circulation systems which makes me think that the work will have some kind of life in it. Is that so?

I am exploring this idea right now. Reading some scientific reports on testing on Zebra Fish hearts I have found that scientists can create alternative beats with them. It was the names that they give the beat that inspired me like 'Chiller' or 'Be-Boy' and I've started to track them down. There is the possibility that things will move but this is still something I am experimenting with. There are many ways of creating movement, a building itself is a kind of organism. This is the linkage I am trying to draw out. The work will include some Zebra Fish i myself have been raising- I call these the Chapel Fish- many of the forms are based from these particular fish. I think the fish is important for scale as well. In the end however, my project is also interested in the dead or 'not yet alive' rather then the living.

So now that we've roughly established what visitors of the exhibition will be able to see in June, how are you going to make this chapel exactly?

It is commonly thought by geneticists and society in general that mutation is dangerous or deadly- however, I would like to look at mutation as a way of generating new forms- and quite literally so.

I am working with Embryos that have been exposed to toxins which create particular malformations often visible in the skeletal structure. It is possible that the toxins themselves may alter the genetics of the animals as well.

The embryos I am working with are only millimeters big. Using CT scans I am creating a 3D virtual models of the embryos. In the virtual world scale is relative. It is a cartesian space of x, y, and z, however, a space on the ground or 'C-Plane' can be one millimeter or one kilometer. It is relative. From here I isolate, scale up, and modify elements of the fish skeletons so they can be used as building blocks for the architectural artwork. I am printing out these pieces using a 3D printer custom made by MaukCC for this project.

Because the printer builds up a piece one .125 mm at a time it will take an eternity to 3D print the entire work- so I am making molds of these elements or printing out the molds themselves and casting multiples in ceramic-like plasters. I've come up with a kind of 'poem' to describe the process:

"Bones as Bits
Bits as Bones
Bones as Modules"

fishIMAG4399.jpg

If i understood correctly from what you said to an interview you did a few weeks ago with Georgius Papadakis your project will use the zebra-fish because you are legally able to make tests on the animal for 5 days. Can you explain us in details the law it is submitted to? And how you want to explore this loop-hole?

I am interested in Zebra Fish because the bio-tech industry and geneticists in academia have become increasingly interested on them. I am also interested in how the bio-tech industry and academia are becoming more and more indistinguishable and how law and capital is shaping research itself.

Zebra Fish are an ideal test case for genetics research for a few reasons. Firstly they are relatively see-through, they breed in multitudes, and last but most importantly for the first 5 days of their life they are not considered animals at all- allowing scientists any freedom in experimentation during this time without the costly procedures of ethics committees. For the first 5 days of their life the Zebra Fish still holds onto the yolk of its egg for nutrients as it develops from embryo to adult. However, the definition of a living animal is that it must be free moving and able to sustain itself independently by eating. So the Zebra fish is considered 'Organic Material' rather than an Animal.

This is protected under the 15th amendment of the EU constitution. Interestingly enough, this amendment protects against animal testing in rodents and apes and also ensures abortion rights. Bound up in this is the definition of what we consider to be life itself.
Genetics research on zebra fish plays upon emergent stages between life and death. If we carry the religious tone of the Fish Bone Chapel these fish exist within what is akin to the doctrine of Limbo.

The forms which I am using from the Zebra Fish are the outcomes of the genetics research itself- in this way I hope to bring this emergent situation as the general framework for my artwork.

0Fish_Printer_Lab.jpg
Fish Printer lab

For the project, you are teaming up with the Netherlands Toxigenomics Centre. What form does the collaboration take exactly? Is it you dictating what needs to be done and they execute your instructions or is the experience more hands-on from your part?

My collaboration with the NTC takes a few different forms. I do most of the work hands on- visiting the labs, collecting samples, attending the CT scanning, and this all informs my own production when I bring the materials into the studio which becomes a kind of extension of the Lab. Even the act of looking through the microscope at embryos is an important experience and there is a difference at looking through the mirrored micro scope of the scientific illustrators at Naturalis. Naturalis has also become a good collaborator in this work.

Since I am not trained as a geneticist each conversation I have informs my work and I am often in a crash course on genetics research which adds new complexities to my project. Often times these details are mundane to the scientist themselves however, they occupy a specialized place that very few people see or experience and yet affects us all and increasingly so as biotechnology and synthetic biology develops in the coming years. Close collaboration with the director Dr. Jos Kleinjans is key in getting things done and getting informed.

The NTC is primarily concerned with the way that long-term exposure to toxins may affect the very genetic composition of humans and animals alike. For example in the Netherlands people drink a long of milk and consume a lot of dairy products. Accepting the milk of another animal itself is a relatively new feature of human biology- however cows eat quite a lot of pesticides which we in turn take in. How will this alter our physiology at the level of DNA and cell replication? There are high stakes for example with Thalidomide- a sleeping agent prescribed to pregnant women in the 1970's resulting in severe birth deformations.

I am working with materials that the NTC is already generating and specifically at their Zebra Fish Lab at the RIVM run by Dr. Aldert Piersma and research conducted by soon-to-be-Dr. Sanne Hermsen. A range of toxins are tested on Zebra Fish embryos and from here certain bio-markers in the fish are measured to see what has been altered. Is it longer or shorter, is its spine curved or straight? Does it have big eyes, small eyes, or no eyes? and so on.

To me it is important to work within the bounds of the research conducted towards making a kind of critical mirror of it and I believe that more can be done with these resulting forms than the particular results sought by the researchers.

More generally, are there existing examples of use of genomics in architecture?

As far as I can see there is very little carry over from genomics to architecture. There are a few categories where they meet- for example the category of Morphology is used both in design and in genetics. It allows one to see change over time. So the chair 'evolves' as a species of bird might- or might now. this is a way of looking at the world in terms of form and shape grammars. In the 19th century there was a more explicit relationship between biology art, and architecture for example in the canonical tests of Karl Blossfeldt: Art Forms in Nature, Owen Jones' The Grammar of Ornament, or Ernst Haeckel's Sea Life drawings in Art Forms in Nature. This expressed itself in ornament much fundamentally- as we see in Rococo and its tendrils and shells.

I am currently advised by Nimish Biloria at the HyperBody Studio in TU Delft who are kind of successors of this tendency after the introduction of the computers to produce dynamic architecture and with a purely functionalist bent. Though the movement of the Blobject (Greg Lynn, Xefirotarch, the whole architecture school of SciArch in LA) has been much discredited I find this futurism fascinating in the idea that one's body might become co-extensive with the architecture however I still prefer the alienation from a space brought by brutalist architecture. Why do we want a building to react to us?

Today there are some novel ideas that imagine utopian futures where one might Grow their own homes like that of Mitchell Joachim or Rachel Armstrong's vision. I think my work is situated in this scenario however within the field of computational architecture I see my role as making a critique of eco-tech ideology. I make this explicit in using the same tools as they do i.e. digital fabrication. That being said I do think that developments in the field of synthetic biology should be redirected for use in art if not architecture. Art must address the status of technology that defines our world- if art hopes to address that world at all. Function of architecture often gets in the way. The fish bone chapel is at the scale of architecture but it is an artwork if this distinction is important. In my mind artwork allows for a wastage that is visible for all to see without any clear legitimations.

Thanks Haseeb!

All images courtesy Haseeb Ahmed.

Previously: The 2011 edition of DA4GA, Charlotte Jarvis talked to me about the Ergo Sum project recently.

The new episode of #A.I.L - artists in laboratories, the weekly radio programme about art and science i present on ResonanceFM, is aired this afternoon at 4pm (London time.)

0aaa9_Headache_detail.jpg
Helen Pynor, Head Ache (detail), from red sea blue water series, 2008

Today i'm talking with Helen Pynor. You might have seen one of Helen's most striking photos in bookshops and on the tube last year, it showed a brain in all its organic glory and was on the book cover and on the posters advertising the exhibition Brains: The mind as matter, which opened last Spring at the Wellcome Collection in London.

Helen Pynor has a background in science but later studied visual art. Three years ago she also became a doctor of philosophy. Her practice combines biological science and visual expression to explore the inside of our bodies, and to investigate the relationship between the physicality of the human body and its culturally constructed status.

During the show we will be talking about how she managed to get her hands on a fresh human brain but Helen will also discuss some of her broader projects such as The Body Is A Big Place, a large-scale installation that explores organ transplantation and the thresholds between life and death.

Peta Clancy and Helen Pynor (sound by Gail Priest), The Body is a Big Place

The show will be aired today Wednesday 22nd of May at 16:00. The repeat is next Tuesday at 6.30 am (yes, a.m!) If you don't live in London, you can catch the online stream or wait till we upload the episodes on soundcloud.

0_MG_2129.jpg
Image courtesy "Where DogsRun"

It's been too long since i've blogged about a project supported by Symbiotica (although they did get their fair amount of mentions and praises in #A.I.L., the show i present on ResonanceFM.)

The new project -developed by researcher and artist Guy Ben-Ary and by artist and academic Dr. Kirsten Hudson- looks into stem cell technology and more precisely Induced pluripotent stem cell, a cell re-programming technique able to reverse-engineer any cells from the body, coerce them back into their embryonic state and then trick the resulting stem cells into becoming any cell in a fully developed body. Regardless of the original tissue from which they were created.

For the In-Potentia work, the artists grew cells that were taken from human foreskin cells purchased from an online catalogue. The cells were then re-programmed by genetic manipulation and bio-engineered to become a neural network.

This functioning "brain" is presented in a sculptural incubator containing custom-made automated feeding and waste retrieval system as well as an electrophysiological recording setup.

The work is more clearly explained in the video below:

In-Potentia exposes, in the most limpid and absurd way, how science is blurring what we are used to regard as clear-cut categories, such as where life begins and ends or what constitutes a person. Or in Guy Ben-Ary's words:

What is the potential for artists employing bio-technologies to address, and modify, boundaries surrounding understandings of life, death and person-hood? And what exactly does it mean culturally, artistically, ontologically, philosophically, politically and ethically to make a living biological brain from human foreskin cells?

The artists have kindly accepted to answer my questions:

0aIMG_0759.jpg
Image courtesy "Where DogsRun"

In Potentia is without doubt a very powerful and thought-provoking work. What is the state of the scientific but also cultural debate around liminal forms of life? where could i read more about it (in a not too daunting, hi-tech language if possible)? do you have simple examples of these 'uncertain lives' at the border between human/non-human, coherent/hybrid, etc.?

Liminal lives are creating a great degree of conjecture and debate in many areas of discourse in science, life sciences and the humanities. Liminal lives come in many forms, basically, anywhere where there is a physical entity on the threshold of change ie an entity that sits somewhere between one form or thing and another, that could be on the threshold of life and death but could also be on other thresholds such as human/machine, human/non-human, or occupy a more moral ambivalence where an understanding of consciousness or sentience is attributed to a live physical entity which we had previously only regarded as being "merely an object" ie the space between object/being. Basically liminal life is any form of life that challenges and alters the very nature of the concept of the human being, but also the contours of human life.

Liminal lives can be "brain dead" or coma patients who are only being kept alive due to machinic intervention, or severely pre-term newborns kept alive with external life support systems, or embryos (both within or outside of a female host body) whose status as "pre-beings" disrupts our understanding of "life" as being conscious, independent and "useful". Liminal lives could also be humans with animal (or other human) organ transplants, genetically modified/manipulated (human and non-human) lives that challenge the ontological status of where and how "life" starts, or even non-humans that exhibit "human-like" characteristics of consciousness etc etc. A liminal life can therefore be found anywhere that our traditional western understandings of what it means to be human is challenged, altered or transgressed. If you were only going to read one thing on liminal lives, I would suggest Susan M Squire's 2004 seminal text: Liminal Lives - Imagining the Human at the Frontiers of Biomedicine.

0a_MG_2141.jpg
Image courtesy "Where DogsRun"

I like the humour behind 'project dickhead' as you nicknamed it but i've been wondering if you're not worried that certain journalists (and bloggers) will jump on the opportunity to depict the project in a simplistic light? Your choice was quite bold because you could have avoided potential simplistic headlines by choosing to use other cells than the ones of foreskin?

The use of foreskin is deliberate and although may evoke simplistic readings, does not take away, I hope) from the ability of these cells to offer an accessible point of entry into an art/science work for non- art or non- science savvy viewers in way that starts to evoke ideas to do with gender, waste, body modification/manipulation, western capitalist opportunism and the role biomedicine and scientific rationalism plays in determining the moral status and hierarchy of all beings.

The idea or research strategy was to try and problematise the technology by putting forward an absurd scenario (make a brain from foreskin) and ask the views to consider it...

0soft control_portal (18).jpg
Image courtesy "Where DogsRun"

Could you briefly explain me the audio-soundscape that exposes the electrical activity of neural signals or synaptic output? It is just the electrical activity from the neural network being amplified? Did you modify the sound in any way to make it more 'evocative' of what the activity of a brain might sound like?

When we thought about exhibiting the project, its aesthetics or shall I say the visual/sonic language we needed to develop to show something like a neural network we decided not to visualise the network using a camera. Rather, we chose to grow the neurons on a multi electrode array or an electrophysiological set up that allows us to amplify the electric activity of the neurons so that the viewers could hear the neurons rather than seeing them. We felt that this sonic element will complement or support the aesthetics of the incubator. We believe that together they support the reading of the artwork. We also chose not a modify the sound of the neurons (even though not such a popular decision) due to our desire for authenticity and integrity. In my mind this way the focus is on the neurons and not programming or musicianship... I think that the blurry, noisy signal (that really needs analysis algorithms to decode it) also adds to the absurdity of the whole work in a way that it is a functional network but really what does this statement mean ?

0a_MG_2133.jpg
Image courtesy "Where DogsRun"

Thanks Guy and Kirsten!

The new episode of #A.I.L - artists in laboratories, the weekly radio programme about art and science i present on ResonanceFM, is aired this afternoon at 4pm (London time.)

Designers and biohackers Raphael Kim and Funk are in the studio with us today to talk about the London Hackspace, a community owned, non-profit organisation where members come to meet, create and fix things individually or together. A hackerspace obviously involves much coding but there's a lot more going on: there's also laser cutting, soldering, drilling, woodworking, sewing, 3d printing, learning, tinkering, repairing and pizza eating. The space even welcomes a small bio-hacking lab.

A few weeks ago, the London Hackspace moved to a new, brighter and much bigger location on Hackney road. HSL is the largest hackerspace in the UK, with hundreds of members. And if you're not one of them the space opens its doors to visitors every Tuesday evening.

0i8hackspace02541bc.jpg
Image by Raphael Kim

0i0Lukas.jpg
DI Biohack Workshop 2013 at the (old) LHS. Image by Raphael Kim

0i0participant2.jpg
DI Biohack Workshop 2013 at the (old) LHS. Image by Raphael Kim

0newespacemetp18707_z.jpg
New space for the LHS, just before moving in. Image by Raphael Kim

The show will be aired today Wednesday 1st May at 16:00. The repeat is next Tuesday at 6.30 am (yes, a.m!) If you don't live in London, you can catch the online stream or wait till we upload the episodes on soundcloud.
 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10 
sponsored by: